2 resultados para average values

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 ($\sp{166}$Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of $\sp{166}$Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of $\sp{166}$Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of $\sp{166}$Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head.^ A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six $\sp{166}$Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with radiation dose estimates for the bone marrow calculated from the standard and regional technique. The results showed the regional technique values correlated more closely to several clinical response parameters. (Abstract shortened by UMI.) ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Path analysis has been applied to components of the iron metabolic system with the intent of suggesting an integrated procedure for better evaluating iron nutritional status at the community level. The primary variables of interest in this study were (1) iron stores, (2) total iron-binding capacity, (3) serum ferritin, (4) serum iron, (5) transferrin saturation, and (6) hemoglobin concentration. Correlation coefficients for relationships among these variables were obtained from published literature and postulated in a series of models using measures of those variables that are feasible to include in a community nutritional survey. Models were built upon known information about the metabolism of iron and were limited by what had been reported in the literature in terms of correlation coefficients or quantitative relationships. Data were pooled from various studies and correlations of the same bivariate relationships were averaged after z- transformations. Correlation matrices were then constructed by transforming the average values back into correlation coefficients. The results of path analysis in this study indicate that hemoglobin is not a good indicator of early iron deficiency. It does not account for variance in iron stores. On the other hand, 91% of the variance in iron stores is explained by serum ferritin and total iron-binding capacity. In addition, the magnitude of the path coefficient (.78) of the serum ferritin-iron stores relationship signifies that serum ferritin is the most important predictor of iron stores in the proposed model. Finally, drawing upon known relations among variables and the amount of variance explained in path models, it is suggested that the following blood measures should be made in assessing community iron deficiency: (1) serum ferritin, (2) total iron-binding capacity, (3) serum iron, (4) transferrin saturation, and (5) hemoglobin concentration. These measures (with acceptable ranges and cut-off points) could make possible the complete evaluation of all three stages of iron deficiency in those persons surveyed at the community level. ^