2 resultados para autonomous vehicles

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neonatal estrogen treatment of BALB/c mice results in the unregulated proliferation of the cervicovaginal epithelium and eventually tumorigenesis. The conversion of the normally estrogen responsive cyclic proliferation of the vaginal epithelium to a continuous estrogen-independent pattern of growth is a complex phenomenon. The aim of this study was to gain an understanding of the mechanism(s) by which steroid hormone administration during a critical period of development alters the cyclic proliferation of vaginal epithelium, ultimately leading to carcinogenesis in the adult animal.^ The LJ6195 murine cervicovaginal tumor was induced by treating newborn female BALB/c mice with 20 $\mu$g 17$\beta$-estradiol plus 100 $\mu$g progesterone for the first 5 days after birth. In contrast to proliferation of the normal vaginal epithelium, proliferation of LJ6195 is not regulated by estradiol. Northern blot analysis of RNA from vaginal tracts of normal mice, neonatal-estrogen treated mice, and LJ6195 indicate that there is an alteration in the expression of several genes such as the estrogen receptor, c-fos, and HER2/neu. In response to neonatal estrogen treatment, the estrogen receptor is down regulated in the murine vaginal tract. Therefore, the estrogen-independent nature of this tissue is established as early as 3 months after treatment. There is strong evidence that the proliferation of LJ6195 is regulated through an autocrine growth pathway. The LJ6195 tumor expresses mRNA for the epidermal growth factor receptor. In addition, conditioned medium from the LJ6195 tumor cell line contains a growth factor(s) with epidermal growth factor-like activity. Conditioned medium from the LJ6195 cell line stimulated the proliferation of the EGF-dependent COMMA D mouse mammary gland cell line in a dose-dependent manner. The addition of an anti-mEGF-antibody to LJ6195 cell cultures significantly decreased growth. These results suggest that the EGF-receptor mediated growth pathway may play a role in regulating the estrogen-independent proliferation of the LJ6195 tumor. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between neoplastic cells and the host stroma play a role in both tumor cell migration and proliferation. Stromal cells provide structural support for malignant cells, modulate the tumor microenvironment, and influence phenotypic behavior as well as the aggressiveness of the malignancy. In response, the tumor provides growth factors, cytokines, and cellular signals that continually initiate new stromal reactions and recruit new cells into the microenvironment to further support tumor growth. Since growing tumors recruit local cells, as well as supplemental cells from the circulation, such as fibroblasts and endothelial precursors, the question arises if it would be possible to access circulating stromal cells to modify the tumor microenvironment for therapeutic benefits. One such cell type, mesenchymal stem cells (MSC), could theoretically be engrafted into stroma. MSC are pluripotent cells that have been shown to form stromal elements such as myofibroblasts, perivascular tissues and connective tissues. Several reports have demonstrated that MSC can incorporate into sites of wound healing and tissue repair, due to active tissue remodeling and local paracrine factors, and given the similarity between wound healing and the carcinoma induced stromal response one can hypothesize that MSC have the potential to be recruited to sites of tumor development. In addition, gene-modified MSC could be used as cellular vehicles to deliver gene products into tumors. My results indicate that MSC home to and participate in tumor stroma formation in ovarian tumor xenografts in mice. Additionally, once homed to tumor beds, MSC proliferate rapidly and integrate. My studies aim at understanding the fate of MSC in the tumor microenvironment, as well as utilizing them for cellular delivery of therapeutic genes into the stroma of ovarian carcinomas. ^