18 resultados para automated text classification
em DigitalCommons@The Texas Medical Center
Resumo:
PURPOSE: To develop and implement a method for improved cerebellar tissue classification on the MRI of brain by automatically isolating the cerebellum prior to segmentation. MATERIALS AND METHODS: Dual fast spin echo (FSE) and fluid attenuation inversion recovery (FLAIR) images were acquired on 18 normal volunteers on a 3 T Philips scanner. The cerebellum was isolated from the rest of the brain using a symmetric inverse consistent nonlinear registration of individual brain with the parcellated template. The cerebellum was then separated by masking the anatomical image with individual FLAIR images. Tissues in both the cerebellum and rest of the brain were separately classified using hidden Markov random field (HMRF), a parametric method, and then combined to obtain tissue classification of the whole brain. The proposed method for tissue classification on real MR brain images was evaluated subjectively by two experts. The segmentation results on Brainweb images with varying noise and intensity nonuniformity levels were quantitatively compared with the ground truth by computing the Dice similarity indices. RESULTS: The proposed method significantly improved the cerebellar tissue classification on all normal volunteers included in this study without compromising the classification in remaining part of the brain. The average similarity indices for gray matter (GM) and white matter (WM) in the cerebellum are 89.81 (+/-2.34) and 93.04 (+/-2.41), demonstrating excellent performance of the proposed methodology. CONCLUSION: The proposed method significantly improved tissue classification in the cerebellum. The GM was overestimated when segmentation was performed on the whole brain as a single object.
Resumo:
Cervical cancer is the leading cause of death and disease from malignant neoplasms among women in developing countries. Even though the Pap smear has significantly decreased the number of deaths from cervical cancer in the past years, it has its limitations. Researchers have developed an automated screening machine which can potentially detect abnormal cases that are overlooked by conventional screening. The goal of quantitative cytology is to classify the patient's tissue sample based on quantitative measurements of the individual cells. It is also much cheaper and potentially can take less time. One of the major challenges of collecting cells with a cytobrush is the possibility of not sampling any existing dysplastic cells on the cervix. Being able to correctly classify patients who have disease without the presence of dysplastic cells could improve the accuracy of quantitative cytology algorithms. Subtle morphologic changes in normal-appearing tissues adjacent to or distant from malignant tumors have been shown to exist, but a comparison of various statistical methods, including many recent advances in the statistical learning field, has not previously been done. The objective of this thesis is to use different classification methods applied to quantitative cytology data for the detection of malignancy associated changes (MACs). In this thesis, Elastic Net is the best algorithm. When we applied the Elastic Net algorithm to the test set, we combined the training set and validation set as "training" set and used 5-fold cross validation to choose the parameter for Elastic Net. It has a sensitivity of 47% at 80% specificity, an AUC 0.52, and a partial AUC 0.10 (95% CI 0.09-0.11).^
Resumo:
A representative committee of Houston Academy of Medicine-Texas Medical Center Library staff and faculty, under the direction of the library administration, successfully redesigned a job classification system for the library's nonprofessional staff. In the new system all nonprofessionals are assigned to one of five grade levels, each with a corresponding salary range. To determine its appropriate grade level each job is analyzed and assigned a numerical value using a point system based on a set of five factors, each of which is assigned a relative number of points. The factors used to measure jobs are: education and experience, complexity of work, administrative accountability, manual skill, and contact with users. Each factor is described according to degrees, so that a job can be given partial credit for a factor. An advisory staff classification committee now participates in the ongoing administration of the classification system.
Resumo:
In a previous paper, we presented a proposed expansion of the National Guideline Clearing-house (NGC) classification1. We performed a preliminary evaluation of the classification based on 100 guidelines randomly selected from the NGC collection. We found that 89 of the 100 guidelines could be assigned to a single guideline category. To test inter-observer agreement, twenty guidelines were also categorized by a second investigator. Agreement was found to be 40-90% depending on the axis, which compares favorably with agreement among MeSH indexers (30-60%)2. We conclude that categorization is feasible. Further research is needed to clarify axes with poor inter-observer agreement.
Resumo:
BACKGROUND: Gray matter lesions are known to be common in multiple sclerosis (MS) and are suspected to play an important role in disease progression and clinical disability. A combination of magnetic resonance imaging (MRI) techniques, double-inversion recovery (DIR), and phase-sensitive inversion recovery (PSIR), has been used for detection and classification of cortical lesions. This study shows that high-resolution three-dimensional (3D) magnetization-prepared rapid acquisition with gradient echo (MPRAGE) improves the classification of cortical lesions by allowing more accurate anatomic localization of lesion morphology. METHODS: 11 patients with MS with previously identified cortical lesions were scanned using DIR, PSIR, and 3D MPRAGE. Lesions were identified on DIR and PSIR and classified as purely intracortical or mixed. MPRAGE images were then examined, and lesions were re-classified based on the new information. RESULTS: The high signal-to-noise ratio, fine anatomic detail, and clear gray-white matter tissue contrast seen in the MPRAGE images provided superior delineation of lesion borders and surrounding gray-white matter junction, improving classification accuracy. 119 lesions were identified as either intracortical or mixed on DIR/PSIR. In 89 cases, MPRAGE confirmed the classification by DIR/PSIR. In 30 cases, MPRAGE overturned the original classification. CONCLUSION: Improved classification of cortical lesions was realized by inclusion of high-spatial resolution 3D MPRAGE. This sequence provides unique detail on lesion morphology that is necessary for accurate classification.
Resumo:
A patient classification system was developed integrating a patient acuity instrument with a computerized nursing distribution method based on a linear programming model. The system was designed for real-time measurement of patient acuity (workload) and allocation of nursing personnel to optimize the utilization of resources.^ The acuity instrument was a prototype tool with eight categories of patients defined by patient severity and nursing intensity parameters. From this tool, the demand for nursing care was defined in patient points with one point equal to one hour of RN time. Validity and reliability of the instrument was determined as follows: (1) Content validity by a panel of expert nurses; (2) predictive validity through a paired t-test analysis of preshift and postshift categorization of patients; (3) initial reliability by a one month pilot of the instrument in a practice setting; and (4) interrater reliability by the Kappa statistic.^ The nursing distribution system was a linear programming model using a branch and bound technique for obtaining integer solutions. The objective function was to minimize the total number of nursing personnel used by optimally assigning the staff to meet the acuity needs of the units. A penalty weight was used as a coefficient of the objective function variables to define priorities for allocation of staff.^ The demand constraints were requirements to meet the total acuity points needed for each unit and to have a minimum number of RNs on each unit. Supply constraints were: (1) total availability of each type of staff and the value of that staff member (value was determined relative to that type of staff's ability to perform the job function of an RN (i.e., value for eight hours RN = 8 points, LVN = 6 points); (2) number of personnel available for floating between units.^ The capability of the model to assign staff quantitatively and qualitatively equal to the manual method was established by a thirty day comparison. Sensitivity testing demonstrated appropriate adjustment of the optimal solution to changes in penalty coefficients in the objective function and to acuity totals in the demand constraints.^ Further investigation of the model documented: correct adjustment of assignments in response to staff value changes; and cost minimization by an addition of a dollar coefficient to the objective function. ^
Resumo:
The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5$\sp\circ$ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1$\sp\circ$ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross-correlation technique were implemented within an experimental radiotherapy picture archival and communication system (RT-PACS) and were used clinically to evaluate the setup variability of two groups of cancer patients treated with and without an alpha-cradle immobilization aid. The tools developed in this project have proven to be very effective and have played an important role in detecting patient alignment errors and field-shape errors in treatment fields formed by a multileaf collimator (MLC). ^
Resumo:
Academic and industrial research in the late 90s have brought about an exponential explosion of DNA sequence data. Automated expert systems are being created to help biologists to extract patterns, trends and links from this ever-deepening ocean of information. Two such systems aimed on retrieving and subsequently utilizing phylogenetically relevant information have been developed in this dissertation, the major objective of which was to automate the often difficult and confusing phylogenetic reconstruction process. ^ Popular phylogenetic reconstruction methods, such as distance-based methods, attempt to find an optimal tree topology (that reflects the relationships among related sequences and their evolutionary history) by searching through the topology space. Various compromises between the fast (but incomplete) and exhaustive (but computationally prohibitive) search heuristics have been suggested. An intelligent compromise algorithm that relies on a flexible “beam” search principle from the Artificial Intelligence domain and uses the pre-computed local topology reliability information to adjust the beam search space continuously is described in the second chapter of this dissertation. ^ However, sometimes even a (virtually) complete distance-based method is inferior to the significantly more elaborate (and computationally expensive) maximum likelihood (ML) method. In fact, depending on the nature of the sequence data in question either method might prove to be superior. Therefore, it is difficult (even for an expert) to tell a priori which phylogenetic reconstruction method—distance-based, ML or maybe maximum parsimony (MP)—should be chosen for any particular data set. ^ A number of factors, often hidden, influence the performance of a method. For example, it is generally understood that for a phylogenetically “difficult” data set more sophisticated methods (e.g., ML) tend to be more effective and thus should be chosen. However, it is the interplay of many factors that one needs to consider in order to avoid choosing an inferior method (potentially a costly mistake, both in terms of computational expenses and in terms of reconstruction accuracy.) ^ Chapter III of this dissertation details a phylogenetic reconstruction expert system that selects a superior proper method automatically. It uses a classifier (a Decision Tree-inducing algorithm) to map a new data set to the proper phylogenetic reconstruction method. ^
Resumo:
Background and purpose: Breast cancer continues to be a health problem for women, representing 28 percent of all female cancers and remaining one of the leading causes of death for women. Breast cancer incidence rates become substantial before the age of 50. After menopause, breast cancer incidence rates continue to increase with age creating a long-lasting source of concern (Harris et al., 1992). Mammography, a technique for the detection of breast tumors in their nonpalpable stage when they are most curable, has taken on considerable importance as a public health measure. The lifetime risk of breast cancer is approximately 1 in 9 and occurs over many decades. Recommendations are that screening be periodic in order to detect cancer at early stages. These recommendations, largely, are not followed. Not only are most women not getting regular mammograms, but this circumstance is particularly the case among older women where regular mammography has been proven to reduce mortality by approximately 30 percent. The purpose of this project was to increase our understanding of factors that are associated with stage of readiness to obtain subsequent mammograms. A secondary purpose of this research was to suggest further conceptual considerations toward the extension of the Transtheoretical Model (TTM) of behavior change to repeat screening mammography. ^ Methods. A sample (n = 1,222) of women 50 years and older in a large multi-specialty clinic in Houston, Texas was surveyed by mail questionnaire regarding their previous screening experience and stage of readiness to obtain repeat screening. A computerized database, maintained on all women who undergo mammography at the clinic, was used to identify women who are eligible for the project. The major statistical technique employed to select the significant variables and to examine the man and interaction effects of independent variables on dependent variables was polychotomous stepwise, logistic regression. A prediction model for each stage of readiness definition was estimated. The expected probabilities for stage of readiness were calculated to assess the magnitude and direction of significant predictors. ^ Results. Analysis showed that both ways of defining stage of readiness for obtaining a screening mammogram were associated with specific constructs, including decisional balance and processes of the change. ^ Conclusions. The results of the present study demonstrate that the TTM appears to translate to repeat mammography screening. Findings in the current study also support finding of previous studies that suggest that stage of readiness is associated with respondent decisional balance and the processes of change. ^
Resumo:
Objective: To investigate hemodynamic responses to lateral rotation. ^ Design: Time-series within a randomized controlled trial pilot study. ^ Setting: A medical intensive care unit (ICU) and a medical-surgical ICU in two tertiary care hospitals. ^ Patients: Adult patients receiving mechanical ventilation. ^ Interventions: Two-hourly manual or continuous automated lateral rotation. ^ Measurements and Main Results: Heart rate (HR) and arterial pressure were sampled every 6 seconds for > 24 hours, and pulse pressure (PP) was computed. Turn data were obtained from a turning flow sheet (manual turn) or with an angle sensor (automated turn). Within-subject ensemble averages were computed for HR, mean arterial pressure (MAP), and PP across turns. Sixteen patients were randomized to either the manual (n = 8) or automated (n = 8) turn. Three patients did not complete the study due to hemodynamic instability, bed malfunction or extubation, leaving 13 patients (n = 6 manual turn and n = 7 automated turn) for analysis. Seven patients (54%) had an arterial line. Changes in hemodynamic variables were statistically significant increases ( p < .05), but few changes were clinically important, defined as ≥ 10 bpm (HR) or ≥ 10 mmHg (MAP and PP), and were observed only in the manual-turn group. All manual-turn patients had prolonged recovery to baseline in HR, MAP and PP of up to 45 minutes (p ≤ .05). No significant turning-related periodicities were found for HR, MAP, or PP. Cross-correlations between variables showed variable lead-lag relations in both groups. A statistically, but not clinically, significant increase in HR of 3 bpm was found for the manual-turn group in the back compared with the right lateral position ( F = 14.37, df = 1, 11, p = .003). ^ Conclusions: Mechanically ventilated critically ill patients experience modest hemodynamic changes with manual lateral rotation. A clinically inconsequential increase in HR, MAP, and PP may persist for up to 45 minutes. Automated lateral rotation has negligible hemodynamic effects. ^
Resumo:
Identifying accurate numbers of soldiers determined to be medically not ready after completing soldier readiness processing may help inform Army leadership about ongoing pressures on the military involved in long conflict with regular deployment. In Army soldiers screened using the SRP checklist for deployment, what is the prevalence of soldiers determined to be medically not ready? Study group. 15,289 soldiers screened at all 25 Army deployment platform sites with the eSRP checklist over a 4-month period (June 20, 2009 to October 20, 2009). The data included for analysis included age, rank, component, gender and final deployment medical readiness status from MEDPROS database. Methods.^ This information was compiled and univariate analysis using chi-square was conducted for each of the key variables by medical readiness status. Results. Descriptive epidemiology Of the total sample 1548 (9.7%) were female and 14319 (90.2%) were male. Enlisted soldiers made up 13,543 (88.6%) of the sample and officers 1,746 (11.4%). In the sample, 1533 (10.0%) were soldiers over the age of 40 and 13756 (90.0%) were age 18-40. Reserve, National Guard and Active Duty made up 1,931 (12.6%), 2,942 (19.2%) and 10,416 (68.1%) respectively. Univariate analysis. Overall 1226 (8.0%) of the soldiers screened were determined to be medically not ready for deployment. Biggest predictive factor was female gender OR (2.8; 2.57-3.28) p<0.001. Followed by enlisted rank OR (2.01; 1.60-2.53) p<0.001. Reserve component OR (1.33; 1.16-1.53) p<0.001 and Guard OR (0.37; 0.30-0.46) p<0.001. For age > 40 demonstrated OR (1.2; 1.09-1.50) p<0.003. Overall the results underscore there may be key demographic groups relating to medical readiness that can be targeted with programs and funding to improve overall military medical readiness.^
Resumo:
This research was intended to evaluate an automated ambulatory medical record and chart review system. Chart review as conceptualized in this research is a series of statements that are made by the computer after reviewing the patients entire computer medical record. The actual chart review st