10 resultados para autoantibodies

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Because studies suggest that ultraviolet (UV) radiation modulates the myositis phenotype and Mi-2 autoantigen expression, we conducted a retrospective investigation to determine whether UV radiation may influence the relative prevalence of dermatomyositis and anti-Mi-2 autoantibodies in the US. METHODS: We assessed the relationship between surface UV radiation intensity in the state of residence at the time of onset with the relative prevalence of dermatomyositis and myositis autoantibodies in 380 patients with myositis from referral centers in the US. Myositis autoantibodies were detected by validated immunoprecipitation assays. Surface UV radiation intensity was estimated from UV Index data collected by the US National Weather Service. RESULTS: UV radiation intensity was associated with the relative proportion of patients with dermatomyositis (odds ratio [OR] 2.3, 95% confidence interval [95% CI] 0.9-5.8) and with the proportion of patients expressing anti-Mi-2 autoantibodies (OR 6.0, 95% CI 1.1-34.1). Modeling of these data showed that these associations were confined to women (OR 3.8, 95% CI 1.3-11.0 and OR 17.3, 95% CI 1.8-162.4, respectively) and suggests that sex influences the effects of UV radiation on autoimmune disorders. Significant associations were not observed in men, nor were UV radiation levels related to the presence of antisynthetase or anti-signal recognition particle autoantibodies. CONCLUSION: This first study of the distribution of myositis phenotypes and UV radiation exposure in the US showed that UV radiation may modulate the clinical and immunologic expression of autoimmune disease in women. Further investigation of the mechanisms by which these effects are produced may provide insights into pathogenesis and suggest therapeutic or preventative strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth-restricted fetuses are at risk for a variety of lifelong medical conditions. Preeclampsia, a life-threatening hypertensive disorder of pregnancy, is associated with fetuses who suffer from intrauterine growth restriction (IUGR). Recently, emerging evidence indicates that preeclamptic women harbor AT(1) receptor agonistic autoantibodies (AT(1)-AAs) that contribute to the disease features. However, the exact role of AT(1)-AAs in IUGR and the underlying mechanisms have not been identified. We report that these autoantibodies are present in the cord blood of women with preeclampsia and retain the ability to activate AT(1) receptors. Using an autoantibody-induced animal model of preeclampsia, we show that AT(1)-AAs cross the mouse placenta, enter fetal circulation, and lead to small fetuses with organ growth retardation. AT(1)-AAs also induce apoptosis in the placentas of pregnant mice, human villous explants, and human trophoblast cells. Finally, autoantibody-induced IUGR and placental apoptosis are diminished by either losartan or an autoantibody-neutralizing peptide. Thus, these studies identify AT(1)-AA as a novel causative factor of preeclampsia-associated IUGR and offer two possible underlying mechanisms: a direct detrimental effect on fetal development by crossing the placenta and entering fetal circulation, and indirectly through AT(1)-AA-induced placental damage. Our findings highlight AT(1)-AAs as important therapeutic targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preeclampsia is a disease that affects 3–5% of all pregnancies. The cause is unknown and there is currently no treatment. The disease poses significant health risks to both the mother and the fetus. To date, research on the topic has not produced a convincing cause for the development of the hallmark symptoms of preeclampsia. The hypothesis of an agonistic autoimmune response to the AT1 receptor is presented. Immunoglobulin fractions from normotensive and preeclampsia patients were prepared for experimental tests. Model systems were tested in three categories to determine if AT 1 receptor specific activation and receptor-ligand interaction was caused by a suspected autoantibody. Activation was found in rat neonatal cardiornyocytes that caused an increased contraction rate. This activity was found in preeclampsia patients, absent in normotensive patients. The activation was antagonized by losartan, an AT1 receptor antagonist, and by epitope peptide competition of the receptor-ligand type interaction. This epitope was the 7 amino acid peptide fragment, AFHYESQ, a sequence present in the second extracellular loop of the AT1 receptor. The patterns of AT1 receptor activation were also found in a human trophoblast cell line, HTR8, with an effect on Pai-1 secretion, a factor that plays a role in preventing hypercoagulation. In human mesangial cells, the AT1 receptor autoantibody present in the immunoglobulin fraction from preeclampsia patients was found to stimulate the secretion of Pai-1, and IL-6, a factor that plays a role in the activation of an inflammatory response. This activity was found in samples from preeclampsia patients, but absent in normotensive patients. Tests including losartan, AFHYESQ, and a non-competitive peptide demonstrated that the secretion of Pai-1 and IL-6 met the criteria for AT1 receptor activation by the suspected agonistic autoantibody. These three model systems address relevant pathophysiology for preeclampsia patients, including increased cardiac output, abnormal placentation, and renal damage. The AT1 receptor agonistic autoantibody is potentially a key player in the development of the pathology and symptoms of preeclampsia. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is the most common autoimmune disease of the central nerve system and Guillain Barré Syndrome (GBS) is an inflammatory neuropathy involving the peripheral nerves. Anti-myelin immunoglobins may play a role in the demyelination processes of the both diseases. Sulfatide is an abundant glycolipid on myelin and is a candidate target antigen for disease related autoantibodies. The objective of this study was to characterize anti-sulfatide antibodies and compare antibodies from GBS and MS patients with fetal antibodies. Our hypothesis is that some B cells producing disease-associated autoantibodies are derived from or related to B cells of the fetal repertoire. Here we report that reactivity of plasma IgM against sulfatide was elevated in twelve MS patients compared with twelve normal subjects. This result implies that anti-sulfatide antibodies are disease-related. A total of sixteen human B lymphocyte clones producing anti-sulfatide autoantibodies were isolated from MS patients, GBS patients and a human fetus. Seven of the clones were from three MS patients, four of the clones were from three GBS patients and five were from the spleen of a twenty-week human fetus. Sequences have been obtained for the heavy and light chain variable regions (VDJ and VJ regions) of all of the anti-sulfatide immunoglobulins. Seven of the sixteen antibodies used VH3 for the variable region gene of the heavy chain consistent with the rate of VH3 usage in randomly selected B cells. Somatic mutations were significantly more frequent in the patient antibodies than in the fetus and somatic mutations in CDR's (Complementarity Determining Region) were significantly more frequent than in framework regions. No significant difference was found between patients and fetus in length of VH CDRIII. However, it is reported that antibodies from randomly selected normal adult B cells have longer CDRIII lengths than those of the fetus (Sanz I, 1991 Journal of Immunology Sep 1;147(5):1720-9). Our results are consistent with derivation of the precursors of B cells producing these autoantibodies from B cells related to those of the fetal repertoire. These findings are consistent with a model in which quiescent B cells from clones produced early in development undergo proliferation in dysregulated disease states, accumulating somatic mutations and increasing in reactivity toward self-antigens. ^ Epitope mapping and molecular modeling were done to elucidate the relationships between antibody structure and binding characteristics. The autoantibodies were tested for binding activity to three different antigens: sulfatide, galactoceramide and ceramide. Molecular modeling suggests that antibodies with positive charge surrounded by or adjacent to hydrophobic groups in the binding pocket bind to the head of sulfatide via the sulfate group through electrostatic interactions. However, the antibodies with hydrophobic groups separated from positive charges appear to bind to the hydrophobic tail of sulfatide. This observation was supported by a study of the effect of NaCl concentration on antigen binding. The result suggested that electrostatic interactions played a major role in sulfate group binding and that hydrophobic interactions were of greater importance for binding to the ceramide group. Our three-dimensional structure data indicated that epitope specificity of these antibodies is more predictable at the level of tertiary than primary structure and suggested positive selection based on structure occurred in the. formation of those autoantibodies. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Innate immune recognition of extracellular host-derived self-DNA and self-RNA is prevented by endosomal seclusion of the Toll-like receptors (TLRs) in the dendritic cells (DCs). However, in psoriasis plasmacytoid dendritic cells have been found to be able to sense self-DNA molecules in complex with the endogenous cationic antimicrobial peptide LL37, which are internalized into the endosomal compartments and thus can access TLR9. We investigated whether this endogenous peptide can also interact with extracellular self-RNA and lead to DC activation. We found that LL37 binds self-RNA as well as self-DNA going into an electrostatic interaction; forms micro-aggregates of nano-scale particles protected from enzymatic degradation and transport it into the endosomal compartments of both plasmacytoid and myeloid dendritic cells. In the plasmacytoid DCs, the self-RNA-LL37 complexes activate TLR7 and like the self-DNA-LL37 complexes, trigger the production of IFN-α in the absence of induction of maturation or production of IL-6 and TNF-α. In contrast to the self-DNA-LL37 complexes, the self-RNA-LL37 complexes are also internalized into the endosomal compartments of myeloid dendritic cells and trigger activation through TLR8, leading to the production of TNF-α and IL-6, and the maturation of the myeloid DCs. Furthermore, we found that these self nucleic acid-LL37 complexes can be found in vivo in the skin lesions of the cutaneous autoimmune disease psoriasis, where they are associated with mature mDCs in situ. On the other hand, in the systemic autoimmune disease systemic lupus erythematosus, self-DNA-LL37 complexes were found to be a constituent of the circulating immune complexes isolated from patient sera. This interaction between the endogenous peptide with the self nucleic acid molecules present in the immune complexes was found to be electrostatic and it confers resistance to enzymatic degradation of the nucleic acid molecules in the immune complexes. Moreover, autoantibodies to these endogenous peptides were found to trigger neutrophil activation and release of neutrophil extracellular traps composed of DNA, which are potential sources of the self nucleic acid-LL37 complexes present in SLE immune complexes. Our results demonstrate that the cationic antimicrobial peptide LL37 drives the innate immune recognition of self nucleic acid molecules through toll-like receptors in human dendritic cells, thus elucidating a pathway for innate sensing of host cell death. This pathway of autoreactivity was found to be pathologically relevant in human autoimmune diseases psoriasis and SLE, and thus this study provides new insights into the mechanisms autoimmune diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preeclampsia (PE), a syndrome affecting 5% of pregnancies, characterized by hypertension and proteinuria, is a leading cause of maternal and fetal morbidity and mortality. The condition is often accompanied by the presence of a circulating maternal autoantibody, the angiotensin II type I receptor agonistic autoantibody (AT(1)-AA). However, the prevalence of AT(1)-AA in PE remains unknown, and the correlation of AT(1)-AA titers with the severity of the disease remains undetermined. We used a sensitive and high-throughput luciferase bioassay to detect AT(1)-AA levels in the serum of 30 normal, 37 preeclamptic (10 mild and 27 severe), and 23 gestational hypertensive individuals. Here we report that AT(1)-AA is highly prevalent in PE ( approximately 95%). Next, by comparing the levels of AT(1)-AA among women with mild and severe PE, we found that the titer of AT(1)-AA is proportional to the severity of the disease. Intriguingly, among severe preeclamptic patients, we discovered that the titer of AT(1)-AA is significantly correlated with the clinical features of PE: systolic blood pressure (r=0.56), proteinuria (r=0.70), and soluble fms-like tyrosine kinase-1 level (r=0.71), respectively. Notably, only AT(1)-AA, and not soluble fms-like tyrosine kinase-1, levels are elevated in gestational hypertensive patients. These data serve as compelling clinical evidence that AT(1)-AA is highly prevalent in PE, and its titer is strongly correlated to the severity of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anti-GM1 antibodies are present in some patients with autoimmune neurological disorders. These antibodies are most frequently associated with acute immune neuropathy called Guillain-Barré syndrome (GBS). Some clinical studies associate the presence of these antibodies with poor recovery in GBS. The patients with incomplete recovery have failure of nerve repair, particularly axon regeneration. Our previous work indicates that monoclonal antibodies can inhibit axon regeneration by engaging cell surface gangliosides (Lehmann et al., 2007). We asked whether passive transfer of human anti-GM1 antibodies from patients with GBS modulate axon regeneration in an animal model. Human anti-GM1 antibodies were compared with other GM1 ligands, cholera toxin B subunit and a monoclonal anti-GM1 antibody. Our results show that patient derived anti-GM1 antibodies and cholera toxin beta subunit impair axon regeneration/repair after PNS injury in mice. Comparative studies indicated that the antibody/ligand-mediated inhibition of axon regeneration is dependent on antibody/ligand characteristics such as affinity-avidity and fine specificity. These data indicate that circulating immune effectors such as human autoantibodies, which are exogenous to the nervous system, can modulate axon regeneration/nerve repair in autoimmune neurological disorders such as GBS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isolated cerebral folate deficiency was detected in a 13-year-old girl with cognitive and motor difficulties and juvenile rheumatoid arthritis. Her serum contains autoantibodies that block membrane-bound folate receptors that are on the choroid plexus and diminish the uptake of folate into the spinal fluid. Whereas her serum folate exceeded 21 ng/mL, her spinal fluid contained 3.2 ng/mL of 5-methyltetrahydrofolate as a consequence of the autoantibodies diminishing the uptake of this folate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To identify systemic sclerosis (SSc) susceptibility loci via a genome-wide association study. METHODS: A genome-wide association study was performed in 137 patients with SSc and 564 controls from Korea using the Affymetrix Human SNP Array 5.0. After fine-mapping studies, the results were replicated in 1,107 SSc patients and 2,747 controls from a US Caucasian population. RESULTS: The single-nucleotide polymorphisms (SNPs) (rs3128930, rs7763822, rs7764491, rs3117230, and rs3128965) of HLA-DPB1 and DPB2 on chromosome 6 formed a distinctive peak with log P values for association with SSc susceptibility (P=8.16x10(-13)). Subtyping analysis of HLA-DPB1 showed that DPB1*1301 (P=7.61x10(-8)) and DPB1*0901 (P=2.55x10(-5)) were the subtypes most susceptible to SSc in Korean subjects. In US Caucasians, 2 pairs of SNPs, rs7763822/rs7764491 and rs3117230/rs3128965, showed strong association with SSc patients who had either circulating anti-DNA topoisomerase I (P=7.58x10(-17)/4.84x10(-16)) or anticentromere autoantibodies (P=1.12x10(-3)/3.2x10(-5)), respectively. CONCLUSION: The results of our genome-wide association study in Korean subjects indicate that the region of HLA-DPB1 and DPB2 contains the loci most susceptible to SSc in a Korean population. The confirmatory studies in US Caucasians indicate that specific SNPs of HLA-DPB1 and/or DPB2 are strongly associated with US Caucasian patients with SSc who are positive for anti-DNA topoisomerase I or anticentromere autoantibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carcinomas that arise from the ovarian surface epithelium represent a great challenge in gynecologic oncology. Although the prognosis of ovarian cancer is influenced by many factors capable of predicting clinical outcome, including tumor stage, pathological grade, and amount of residual disease following primary surgery, the biological aspects of ovarian cancer are not completely understood, thus implying that there may be other predictive indicators that could be used independently or in conjunction with these factors to provide a clearer clinical picture. The identification of additional markers with biological relevance is desirable. To identify disease-associated peptides, a phage display random peptide library was used to screen immunoglobulins derived from a patient with ovarian cancer. One peptide was markedly enriched following three rounds of affinity selection. The presence of autoantibodies against the peptide was examined in a panel of ovarian cancer patients. Stage IV patients exhibited a high percentage of positive reactivity (59%). This was in contrast to stage III patients, who only displayed 7% positive reactivity. Antibodies against the peptide were affinity purified, and heat-shock protein 90 (Hsp90) was identified as the corresponding autoantigen. The expression profile of the identified antigen was determined. Hsp90 was expressed in all sections examined regardless of degree of anaplasia. This thesis shows that utilizing the humoral response to ovarian cancer can be used to identify a tumor antigen in ovarian cancer. The data show that certain antigens may be expressed in ovarian tumors independent of the disease stage or grade, whereas circulating antibodies against such epitopes are only found in a subset of patients. ^