4 resultados para australian water accounting standard

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Herbicides are used to control the growth of weeds along highways, power lines, and many other urban locations. Exposure to herbicides has been linked to adverse health outcomes. This study was initiated to pretest for the presence of herbicides in multiple water sources near intersections in a corridor in the Northwest Harris County (specifically in the Highway 6/FM 1960, North Freeway 45, US 290 and S 99 corridor). Roadside water and tap water samples were collected and analyzed for herbicides using the established Environmental Protection Agency (EPA) Method 515.4: "Determination of Chlorinated Acids in Drinking Water by Liquid-Liquid Micro-extraction, Derivatization, and Fast Gas Chromatography with Electron Capture Detection." A standard operating procedure (adapted from the US EPA Method 515.4) was developed for subsequent, larger studies of environmental fate of herbicides and non-occupational exposure risks. Preliminary testing of 16 water samples was performed to pretest the existence of trace herbicides; all concentrations that were greater than the minimum reporting limits of each analyte are reported with a 99 percent confidence. This study failed to find concentrations above the limits of detection of the method in any of the samples collected on June 15, 2008. However, this does not indicate that the waters around the NW Harris County are free of herbicides and metabolites. A larger and repeated sampling in the region would be necessary to make that claim. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental data sets of pollutant concentrations in air, water, and soil frequently include unquantified sample values reported only as being below the analytical method detection limit. These values, referred to as censored values, should be considered in the estimation of distribution parameters as each represents some value of pollutant concentration between zero and the detection limit. Most of the currently accepted methods for estimating the population parameters of environmental data sets containing censored values rely upon the assumption of an underlying normal (or transformed normal) distribution. This assumption can result in unacceptable levels of error in parameter estimation due to the unbounded left tail of the normal distribution. With the beta distribution, which is bounded by the same range of a distribution of concentrations, $\rm\lbrack0\le x\le1\rbrack,$ parameter estimation errors resulting from improper distribution bounds are avoided. This work developed a method that uses the beta distribution to estimate population parameters from censored environmental data sets and evaluated its performance in comparison to currently accepted methods that rely upon an underlying normal (or transformed normal) distribution. Data sets were generated assuming typical values encountered in environmental pollutant evaluation for mean, standard deviation, and number of variates. For each set of model values, data sets were generated assuming that the data was distributed either normally, lognormally, or according to a beta distribution. For varying levels of censoring, two established methods of parameter estimation, regression on normal ordered statistics, and regression on lognormal ordered statistics, were used to estimate the known mean and standard deviation of each data set. The method developed for this study, employing a beta distribution assumption, was also used to estimate parameters and the relative accuracy of all three methods were compared. For data sets of all three distribution types, and for censoring levels up to 50%, the performance of the new method equaled, if not exceeded, the performance of the two established methods. Because of its robustness in parameter estimation regardless of distribution type or censoring level, the method employing the beta distribution should be considered for full development in estimating parameters for censored environmental data sets. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new technique for the detection of microbiological fecal pollution in drinking and in raw surface water has been modified and tested against the standard multiple-tube fermentation technique (most-probable-number, MPN). The performance of the new test in detecting fecal pollution in drinking water has been tested at different incubation temperatures. The basis for the new test was the detection of hydrogen sulfide produced by the hydrogen sulfide producing bacteria which are usually associated with the coliform group. The positive results are indicated by the appearance of a brown to black color in the contents of the fermentation tube within 18 to 24 hours of incubation at 35 (+OR-) .5(DEGREES)C. For this study 158 water samples of different sources have been used. The results were analyzed statistically with the paired t-test and the one-way analysis of variance. No statistically significant difference was noticed between the two methods, when tested 35 (+OR-) .5(DEGREES)C, in detecting fecal pollution in drinking water. The new test showed more positive results with raw surface water, which could be due to the presence of hydrogen sulfide producing bacteria of non-fecal origin like Desulfovibrio and Desulfomaculum. The survival of the hydrogen sulfide producing bacteria and the coliforms was also tested over a 7-day period, and the results showed no significant difference. The two methods showed no significant difference when used to detect fecal pollution at a very low coliform density. The results showed that the new test is mostly effective, in detecting fecal pollution in drinking water, when used at 35 (+OR-) .5(DEGREES)C. The new test is effective, simple, and less expensive when used to detect fecal pollution in drinking water and raw surface water at 35 (+OR-) .5(DEGREES)C. The method can be used for qualitative and/or quantitative analysis of water in the field and in the laboratory. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers.^ For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber.^ For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent.^ The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response. ^