1 resultado para aromatic compound

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation presents evidence to support the hypothesis that cytoplasmic malate dehydrogenase (MDH-1) is the enzyme in humans which catalyzes the reduction of aromatic alpha-keto acids in the presence of NADH, and the enzyme which has been described in the literature as aromatic alpha-keto acid reductase (KAR; E.C. 1.1.1.96) is actually a secondary activity of cytoplasmic malate dehydrogenase.^ Purified MDH and purified KAR have the same molecular weight, subunit structure, heat-inactivation profile and tissue distribution. After starch gel electrophoresis, and using p-hydroxyphenylpyruvic acid (HPPA) as substrate, KAR activity co-migrates with MDH-1 in all species studied except some marine animals. Inhibition with malate, the end-product of malate dehydrogenase, substantially reduces or totally eliminates KAR activity. Purified cytoplasmic MDH from human erythrocytes has an alpha-keto acid reductase activity with identical mobility. All electrophoretic variants of MDH-1 seen in the fresh-water bony fish Xiphophorus, the amphibians Rana and humans exhibited identical variation for KAR, and the two traits co-segregated in the small group of offspring from one Rana heterozygote studied. Both enzymes show almost no electrophoretic variation among humans from many ethnic groups, and among several inbred strains of mice both MDH-s and KAR co-migrate with no variation. MDH-1 and KAR in mouse and Chinese hamster fibroblasts show identical mobility differences between species. Antisera raised against purified chicken cytoplasmic MDH totally inhibited both MDH-1 and KAR in chickens and humans. Mitochondrial MDH from tissue homogenates has no detectable KAR activity but purified MDH-2 does.^ The previous claim that the gene for KAR is on human chromosome 12 is disputed because both MDH-1 and LDH bands appear with slightly different mobility approximately midway between the human and hamster controls in somatic cell hybrid studies, and the meaning of this artifact is discussed. ^