4 resultados para area equivalency index
em DigitalCommons@The Texas Medical Center
Resumo:
Geographic health planning analyses, such as service area calculations, are hampered by a lack of patient-specific geographic data. Using the limited patient address information in patient management systems, planners analyze patient origin based on home address. But activity space research done sparingly in public health and extensively in non-health related arenas uses multiple addresses per person when analyzing accessibility. Also, health care access research has shown that there are many non-geographic factors that influence choice of provider. Most planning methods, however, overlook non-geographic factors influencing choice of provider, and the limited data mean the analyses can only be related to home address. This research attempted to determine to what extent geography plays a part in patient choice of provider and to determine if activity space data can be used to calculate service areas for primary care providers. During Spring 2008, a convenience sample of 384 patients of a locally-funded Community Health Center in Houston, Texas, completed a survey that asked about what factors are important when he or she selects a health care provider. A subset of this group (336) also completed an activity space log that captured location and time data on the places where the patient regularly goes. Survey results indicate that for this patient population, geography plays a role in their choice of health care provider, but it is not the most important reason for choosing a provider. Other factors for choosing a health care provider such as the provider offering “free or low cost visits”, meeting “all of the patient’s health care needs”, and seeing “the patient quickly” were all ranked higher than geographic reasons. Analysis of the patient activity locations shows that activity spaces can be used to create service areas for a single primary care provider. Weighted activity-space-based service areas have the potential to include more patients in the service area since more than one location per patient is used. Further analysis of the logs shows that a reduced set of locations by time and type could be used for this methodology, facilitating ongoing data collection for activity-space-based planning efforts.
Resumo:
Childhood overweight can increase the risk of chronic diseases later in life. To determine the prevalence, trends and determinants of overweight among children ages 6-15 years old in Vietnam, we assessed data on body mass index (BMI) and demographic and socio-economic characteristics obtained from the 1992 Vietnam Living Standard Survey (1992 VLSS), the 1997 Vietnam Living Standard Survey (1997 VLSS), and the 2000 General Nutrition Survey (2000 GNS). These surveys used multi-stage cluster sample designs to produce nationally representative samples of Vietnamese children ages 6-15 years in 1992-1993, 1997-1998 and 2000. BMI classification was determined using cut-off values set by the International Obesity Task Force (IOTF). The mean prevalence of at risk of overweight and overweight among Vietnamese children rapidly increased from 0.4% in 1992 to 2.0% in 2000, along with a high prevalence of underweight (33.4% in 2000). Increases in weight, height and BMI varied according to gender, area of residence and socioeconomic status. Age, areas of residence and education of the household head are statistically significant predictors of at risk of overweight and overweight. This study identified the prevalence and trends of weight among children crucial to understanding the prevention of child overweight in Vietnam. ^
Resumo:
Critically ill and injured patients require pain relief and sedation to reduce the body's stress response and to facilitate painful diagnostic and therapeutic procedures. Presently, the level of sedation and analgesia is guided by the use of clinical scores which can be unreliable. There is therefore, a need for an objective measure of sedation and analgesia. The Bispectral Index (BIS) and Patient State Index (PSI) were recently introduced into clinical practice as objective measures of the depth of analgesia and sedation. ^ Aim. To compare the different measures of sedation and analgesia (BIS and PSI) to the standard and commonly used modified Ramsay Score (MRS) and determine if the monitors can be used interchangeably. ^ Methods. MRS, BIS and PSI values were obtained in 50 postoperative cardiac surgery patients requiring analgesia and sedation from June to December 2004. The MRS, BIS and PSI values were assessed hourly for up to 6-h by a single observer. ^ The relationship between BIS and PSI values were explored using scatter plots and correlation between MRS, BIS and PSI was determined using Spearman's correlation coefficient. Intra-class correlation (ICC) was used to determine the inter-rater reliability of MRS, BIS and PSI. Kappa statistics was used to further evaluate the agreement between BIS and PSI at light, moderate and deep levels of sedation. ^ Results. There was a positive correlation between BIS and PSI values (Rho = 0.731, p<0.001). Intra-class correlation between BIS and PSI was 0.58, MRS and BIS 0.43 and MRS and PSI 0.27. Using Kappa statistics, agreement between MRS and BIS was 0.35 (95% CI: 0.27–0.43) and for MRS and PSI was 0.21 (95% CI: 0.15–0.28). The kappa statistic for BIS and PSI was 0.45 (95% CI: 0.37–0.52). Receiver operating characteristics (ROC) curves constructed to detect undersedation indicated an area under the curve (AUC) of 0.91 (95% CI = 0.87 to 0.94) for the BIS and 0.84 (95% CI = 0.79 to 0.88) for the PSI. For detection of oversedation, AUC for the BIS was 0.89 (95% CI = 0.84 to 0.92) and 0.80 (95% CI = 0.75 to 0.85) for the PSI. ^ Conclusions. There is a statistically significant positive correlation between the BIS and PSI but poor correlation and poor test agreement between the MRS and BIS as well as MRS and PSI. Both the BIS and PSI demonstrated a high level of prediction for undersedation and oversedation; however, the BIS and PSI can not be considered interchangeable monitors of sedation. ^
Resumo:
Geographic health planning analyses, such as service area calculations, are hampered by a lack of patient-specific geographic data. Using the limited patient address information in patient management systems, planners analyze patient origin based on home address. But activity space research done sparingly in public health and extensively in non-health related arenas uses multiple addresses per person when analyzing accessibility. Also, health care access research has shown that there are many non-geographic factors that influence choice of provider. Most planning methods, however, overlook non-geographic factors influencing choice of provider, and the limited data mean the analyses can only be related to home address. This research attempted to determine to what extent geography plays a part in patient choice of provider and to determine if activity space data can be used to calculate service areas for primary care providers. ^ During Spring 2008, a convenience sample of 384 patients of a locally-funded Community Health Center in Houston, Texas, completed a survey that asked about what factors are important when he or she selects a health care provider. A subset of this group (336) also completed an activity space log that captured location and time data on the places where the patient regularly goes. ^ Survey results indicate that for this patient population, geography plays a role in their choice of health care provider, but it is not the most important reason for choosing a provider. Other factors for choosing a health care provider such as the provider offering "free or low cost visits", meeting "all of the patient's health care needs", and seeing "the patient quickly" were all ranked higher than geographic reasons. ^ Analysis of the patient activity locations shows that activity spaces can be used to create service areas for a single primary care provider. Weighted activity-space-based service areas have the potential to include more patients in the service area since more than one location per patient is used. Further analysis of the logs shows that a reduced set of locations by time and type could be used for this methodology, facilitating ongoing data collection for activity-space-based planning efforts. ^