4 resultados para arc spline

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The risk of second malignant neoplasms (SMNs) following prostate radiotherapy is a concern due to the large population of survivors and decreasing age at diagnosis. It is known that parallel-opposed beam proton therapy carries a lower risk than photon IMRT. However, a comparison of SMN risk following proton and photon arc therapies has not previously been reported. The purpose of this study was to predict the ratio of excess relative risk (RRR) of SMN incidence following proton arc therapy to that after volumetric modulated arc therapy (VMAT). Additionally, we investigated the impact of margin size and the effect of risk-minimized proton beam weighting on predicted RRR. Physician-approved treatment plans were created for both modalities for three patients. Therapeutic dose was obtained with differential dose-volume histograms from the treatment planning system, and stray dose was estimated from the literature or calculated with Monte Carlo simulations. Then, various risk models were applied to the total dose. Additional treatment plans were also investigated with varying margin size and risk-minimized proton beam weighting. The mean RRR ranged from 0.74 to 0.99, depending on risk model. The additional treatment plans revealed that the RRR remained approximately constant with varying margin size, and that the predicted RRR was reduced by 12% using a risk-minimized proton arc therapy planning technique. In conclusion, proton arc therapy was found to provide an advantage over VMAT in regard to predicted risk of SMN following prostate radiotherapy. This advantage was independent of margin size and was amplified with risk-optimized proton beam weighting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the clinical impact of the Varian Exact Couch on dose and volume coverage to targets and critical structures and tumor control probability (TCP) for 6-MV IMRT and Arc Therapy. Methods: Five clinical prostate patients were planned with both, 6-MV 8-field IMRT and 6-MV 2-field RapidArc using the Eclipse treatment planning system (TPS). These plans neglected treatment couch attenuation, as is standard clinical practice. Dose distributions were then recalculated in Eclipse with the inclusion of the Varian Exact Couch (imaging couch top) and the rails in varying configurations. The changes in dose and coverage were evaluated using the DVHs from each plan iteration. We used a tumor control probability (TCP) model to calculate losses in tumor control resulting from not accounting for the couch top and rails. We also verified dose measurements in a phantom. Results: Failure to account for the treatment couch and rails resulted in clinically unacceptable dose and volume coverage losses to the target for both IMRT and RapidArc. The couch caused average dose losses (relative to plans that ignored the couch) to the prostate of 4.2% and 2.0% for IMRT with the rails out and in, respectively, and 3.2% and 2.9% for RapidArc with the rails out and in, respectively. On average, the percentage of the target covered by the prescribed dose dropped to 35% and 84% for IMRT (rails out and in, respectively) and to 18% and 17% for RapidArc (rails out and in, respectively). The TCP was also reduced by as much as 10.5% (6.3% on average). Dose and volume coverage losses for IMRT plans were primarily due to the rails, while the imaging couch top contributed most to losses for RapidArc. Both the couch top and rails contribute to dose and coverage losses that can render plans clinically unacceptable. A follow-up study we performed found that the less attenuating unipanel mesh couch top available with the Varian Exact couch does not cause a clinically impactful loss of dose or coverage for IMRT but still causes an unacceptable loss for RapidArc. Conclusions: Both the imaging couch top and rails contribute to dose and coverage loss to a degree that, if included, would prevent the plan from meeting clinical planning criteria. Therefore, the imaging and mesh couch tops and rails should be accounted for in Arc Therapy and the imaging couch and rails only in IMRT treatment planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation develops and explores the methodology for the use of cubic spline functions in assessing time-by-covariate interactions in Cox proportional hazards regression models. These interactions indicate violations of the proportional hazards assumption of the Cox model. Use of cubic spline functions allows for the investigation of the shape of a possible covariate time-dependence without having to specify a particular functional form. Cubic spline functions yield both a graphical method and a formal test for the proportional hazards assumption as well as a test of the nonlinearity of the time-by-covariate interaction. Five existing methods for assessing violations of the proportional hazards assumption are reviewed and applied along with cubic splines to three well known two-sample datasets. An additional dataset with three covariates is used to explore the use of cubic spline functions in a more general setting. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Validation of treatment plan quality and dose calculation accuracy is essential for new radiotherapy techniques, including volumetric modulated arc therapy (VMAT). VMAT delivers intensity modulated radiotherapy treatments while simultaneously rotating the gantry, adding an additional level of complexity to both the dose calculation and delivery of VMAT treatments compared to static gantry IMRT. The purpose of this project was to compare two VMAT systems, Elekta VMAT and Varian RapidArc, to the current standard of care, IMRT, in terms of both treatment plan quality and dosimetric delivery accuracy using the Radiological Physics Center (RPC) head and neck (H&N) phantom. Clinically relevant treatment plans were created for the phantom using typical prescription and dose constraints for Elekta VMAT (planned with Pinnacle3 Smart Arc) and RapidArc and IMRT (both planned with Eclipse). The treatment plans were evaluated to determine if they were clinically comparable using several dosimetric criteria, including ability to meet dose objectives, hot spots, conformity index, and homogeneity index. The planned treatments were delivered to the phantom and absolute doses and relative dose distributions were measured with thermoluminescent dosimeters (TLDs) and radiochromic film, respectively. The measured and calculated doses of each treatment were compared to determine if they were clinically acceptable based upon RPC criteria of ±7% dose difference and 4 mm distance-to-agreement. Gamma analysis was used to assess dosimetric accuracy, as well. All treatment plans were able to meet the dosimetric objectives set by the RPC and had similar hot spots in the normal tissue. The Elekta VMAT plan was more homogenous but less conformal than the RapidArc and IMRT plans. When comparing the measured and calculated doses, all plans met the RPC ±7%/4 mm criteria. The percent of points passing the gamma analysis for each treatment delivery was acceptable. Treatment plan quality of the Elekta VMAT, RapidArc and IMRT treatments were comparable for consistent dose prescriptions and constraints. Additionally, the dosimetric accuracy of the Elekta VMAT and RapidArc treatments was verified to be within acceptable tolerances.