2 resultados para antimicrobial agent
em DigitalCommons@The Texas Medical Center
Resumo:
In order to identify optimal therapy for children with bacterial pneumonia, Pakistan's ARI Program, in collaboration with the National Institute of Health (NIH), Islamabad, undertook a national surveillance of antimicrobial resistance in S. pneumoniae and H. influenzae. The project was carried out at selected urban and peripheral sites in 6 different regions of Pakistan, in 1991–92. Nasopharyngeal (NP) specimens and blood cultures were obtained from children with pneumonia diagnosed in the outpatient clinic of participating facilities. Organisms were isolated by local hospital laboratories and sent to NIH for confirmation, serotyping and antimicrobial susceptibility testing. Following were the aims of the study (i) to determine the antimicrobial resistance patterns of S. pneumoniae and H. influenzae in children aged 2–59 months; (ii) to determine the ability of selected laboratories to identify and effectively transport isolates of S. pneumoniae and H. influenzae cultured from nasopharyngeal and blood specimens; (iii) to validate the comparability of resistance patterns for nasopharyngeal and blood isolates of S. pneumoniae and H. influenzae from children with pneumonia; and (iv) to examine the effect of drug resistance and laboratory error on the cost of effectively treating children with ARI. ^ A total of 1293 children with ARI were included in the study: 969 (75%) from urban areas and 324 (25%) from rural parts of the country. Of 1293, there were 786 (61%) male and 507 (39%) female children. The resistance rate of S. pneumoniae to various antibiotics among the urban children with ARI was: TMP/SMX (62%); chloramphenicol (23%); penicillin (5%); tetracycline (16%); and ampicillin/amoxicillin (0%). The rates of resistance of H. influenzae were higher than S. pneumoniae: TMP/SMX (85%); chloramphenicol (62%); penicillin (59%); ampicillin/amoxicillin (46%); and tetracycline (100%). There were similar rates of resistance to each antimicrobial agent among isolates from the rural children. ^ Of a total 614 specimens that were tested for antimicrobial susceptibility, 432 (70.4%) were resistant to TMP/SMX and 93 (15.2%) were resistant to antimicrobial agents other than TMP/SMX viz. ampicillin/amoxicillin, chloramphenicol, penicillin, and tetracycline. ^ The sensitivity and positive predictive value of peripheral laboratories for H. influenzae were 99% and 65%, respectively. Similarly, the sensitivity and positive predictive value of peripheral laboratory tests compared to gold standard i.e. NIH laboratory, for S. pneumoniae were 99% and 54%, respectively. ^ The sensitivity and positive predictive value of nasopharyngeal specimens compared to blood cultures (gold standard), isolated by the peripheral laboratories, for H. influenzae were 88% and 11%, and for S. pneumoniae 92% and 39%, respectively. (Abstract shortened by UMI.)^
Resumo:
C. difficile causes gastrointestinal infections in humans, including severe diarrhea. It is implicated in 20%-30% of cases of antibiotic-associated diarrhea, in 50%-70% of cases of antibiotic-associated colitis, and in >90% of cases of antibiotic-associated pseudomembranous colitis. Exposure to antimicrobial agent, hospitalization and age are some of the risk factors that predispose to CDI. Virtually all hospitalized patients with nosocomially-acquired CDI have a history of treatment with antimicrobials or neoplastic agent within the previous 2 months. The development of CDI usually occurs during treatment with antibiotics or some weeks after completing the course of the antibiotics. ^ After exposure to the organism (often in a hospital), the median incubation period is less than 1 week, with a median time of onset of 2days. The difference in the time between the use of antibiotic and the development of the disease relate to the timing of exogenous acquisition of C. difficile. ^ This paper reviewed the literature for studies on different classes of antibiotics in association with the rates of primary CDI and RCDI from the year 1984 to 2012. The databases searched in this systematic review were: PubMed (National Library of Medicine) and Medline (R) (Ovid). RefWorks was used to store bibliographic data. ^ The search strategy yielded 733 studies, 692 articles from Ovid Medline (R) and 41 articles from PubMed after removing all duplicates. Only 11 studies were included as high quality studies. Out of the 11 studies reviewed, 6 studies described the development of CDI in non-CDI patients taking antibiotics for other purposes and 5 studies identified the risk factors associated with the development of recurrent CDI after exposure to antibiotics. ^ The risk of developing CDI in non-CDI patients receiving beta lactam antibiotics was 2.35%, while fluoroquinolones, clindamycin/macrolides and other antibiotics were associated with 2.64%, 2.54% and 2.35% respectively. Of those who received beta lactam antibiotic, 26.7% developed RCDI, while 36.8% of those who received any fluoroquinolone developed RCDI, 26.5% of those who received either clindamycin or macrolides developed RCDI and 29.1% of those who received other antibiotics developed RCDI. Continued use of non-C. difficile antibiotics especially fluoroquinolones was identified as an important risk factor for primary CDI and recurrent CDI. ^