13 resultados para antibody mediated rejection

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trophism as a "clonal dominance" support mechanism for tumor cells is an unexplored area of tumor progression. This report presents evidence that the human melanoma low-affinity neurotrophin receptor (p75) can signal independently of its high-affinity tyrosine kinase counterparts, the TRK family of kinases. Signaling may be accomplished by a p75-associated purine-analog-sensitive kinase and results in enhanced invasion into a reconstituted basement membrane with a corresponding stimulation of matrix metalloproteinase-2 expression. Additionally, a "stress culture" survival assay was developed to mimic the growth limiting conditions encountered by melanoma cells in a rapidly growing primary tumor or metastatic deposit prior to neoangiogenesis. Under these conditions, p75, promotes the survival of high p75 expressing brain-colonizing melanoma cells. Extensive 70W melanoma cell-cell contact, which downregulates p75, immediately precedes the induction of cell death associated with diminished production of two key cell survival factors, bcl-2 and the p85 subunit of phosphoinositol-3-kinase, and an elevation in apoptosis promoting intracellular reactive oxygen species (ROSs). Since one function of bcl-2 may be to control the generation of ROSs via the antioxidant pathway, these cells may receive a apoptosis-prompting "double hit". 70W melanoma cell death occurred by an apoptotic mechanism displaying classical morphological changes including plasma membrane blebbing, loss of microvilli and redistribution of ribosomes. 70W apoptosis could be pharmacologically triggered following anti-p75 monoclonal antibody-mediated clustering of p75 receptors. 70W cells fluorescently sorted for high-p75 expression (p75$\sp{\rm H}$ cells) exhibited an augmented survival potential and a predilection to sort with the S + G2/M growth phase, relative to their low p75 expressing, p75$\sp{\rm L}$ counterparts. Apoptosis is significantly delayed by p75$\sp{\rm H}$ cells, whereas p75$\sp{\rm L}$ cells are exquisitely prone to initiate apoptosis. Importantly, the p75$\sp{\rm L}$ cells that survive apoptosis, highly re-expressed p75 and were remarkably responsive to exogenous NGF.^ These are the first data to implicate p75-mediated neurotrophism as an invasion and survival support mechanism employed by brain-metastatic cells. In particular, these results may have implications in little understood phenomena of tumor progression, such as the emergence of "clonal dominance" and tumor dormancy. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anti-glycan antibodies directed against gangliosides are now considered the major immune effectors that induce damage to intact nerve fibers in some variants of the monophasic neuropathic disorders that comprise Guillain-Barré syndrome. Recent experimental studies elucidating the complexity of anti-glycan antibody-mediated pathobiologic effects on intact and injured nerves undergoing repair are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of the K1 gene of human herpesvirus 8 activates nuclear factor-kappaB and induces lymph node hyperplasia and lymphomas in transgenic mice. To further delineate its role in cell survival, we determined whether K1 altered apoptosis of lymphoma cells. K1 protein is expressed in Kaposi sarcoma and primary effusion lymphoma. We retrovirally transfected BJAB lymphoma, THP-1, U937, and Kaposi sarcoma SLK cells to express K1 and a K1 mutant with the deleted immunoreceptor tyrosine-based activation motif (K1m). We challenged cells with an agonistic anti-Fas antibody, Fas ligand, irradiation, and tumor necrosis factor-related apoptosis-inducing ligand. K1 transfectants but not K1m transfectants exhibited reduced levels of apoptosis induced by the anti-Fas antibody but not apoptosis induced by the tumor necrosis factor-related apoptosis-inducing ligand or irradiation. K1 expression resulted in reduced apoptosis rates as shown in several assays. K1 induced a modest reduction in levels of Fas-associated death domain protein, and procaspase 8 recruited to the death-inducing signaling complex. Finally, K1 transfectants cleaved procaspase 8 at significantly lower rates than did K1m transfectants. K1-transfected mice, compared with vector-transfected mice, showed lower death rates after challenge with anti-Fas antibody. K1 may contribute to lymphoma development by stimulating cell survival by selectively blocking Fas-mediated apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies were performed to test the hypothesis that type I hypersensitivity underlies worm induced intestinal fluid secretion and the rapid rejection of Trichinella spiralis from immunized rats, and the two events may be related in a cause-effect manner.^ Two approaches were taken. One was to determine whether inhibition of anaphylaxis-mediated Cl$\sp{-}$ and fluid secretion accompanying a secondary infection impedes worm rejection from immune hosts. The other was to determine whether induction of intestinal fluid secretion in nonimmune hosts interfered with worm establishment. In both studies, fluid secretion was measured volumetrically 30 min after a challenge infection and worms were counted.^ In immunized rats indomethacin did not affect the worm-induced fluid secretion when used alone, despite inhibiting mucosal prostaglandin synthesis. Fluid secretion was reduced by treatment with diphenhydramine and further reduced by the combination of diphenhydramine and indomethacin. The paradoxical effects of indomethacin when used alone compared with its coadministration with diphenhydramine is explained by the enhancing effect of indomethacin on histamine release. Abolishing net fluid secretion in these studies had no effect on rapid worm rejection in immune hosts.^ Worm establishment was reduced in recipients of immune serum containing IgE antibodies. Net intestinal fluid secretion induced in normal rats by PGE$\sb2$, cholera toxin, or hypertonic mannitol solution had no effect on worm establishment compared with untreated controls.^ In a related experiment, worm-induced intestinal fluid secretion and worm rejection in immune rats were partially blocked by concurrent injection with 5-HT$\sb2$ and 5-HT$\sb3$ blockers (Ketanserin and MDL-72222), suggesting that 5-HT is involved. This possible involvement was supported in that treatment of nonimmune rats with 5-HT significantly inhibited worm establishment in the intestine.^ Results indicate that anaphylaxis is the basis for both worm-induced intestinal fluid secretion and rapid rejection of T. spiralis in immune rats, but these events are independent of one another. 5-HT is a possible mediator of worm rejection, however, its mechanism of action is related to something other than fluid secretion. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrophysiological studies were conducted to test the hypothesis that alterations in intestinal epithelial function are associated with immunological responses directed against the enteric parasite, Trichinella spirals. Trichinella antigens were used to challenge sensitized jejunum from infected guinea pigs while monitoring ion transport properties of the tissue in an Ussing-type chamber. The addition of antigen caused increases in transepithelial PD and I(,sc) that were rapidly induced, peaked at 1.5 to 2 min after antigen-challenge, and lasted 10 to 20 min thereafter. The increase in I(,sc) ((DELTA)I(,sc)) varied in a dose-dependent manner until a maximal increase of 40 (mu)A/cm('2) was obtained by the addition of 13 (mu)g of antigenic protein per ml of serosal fluid in the Ussing chamber. Trichinella antigen did not elicit alterations in either PD or I(,sc) of nonimmune tissue. Jejunal tissue from guinea pigs immunized with ovalbumin according to a protocol that stimulated homocytotropic antibody production responded electrically to challenge with ovalbumin but not trichinella antigen. Jejunal tissue which was passively sensitized with immune serum having a passive cutaneous anaphylaxis (PCA) titer of 32 for both IgE and IgG(,1) anti-trichinella anti-bodies responded electrically after exposure to trichinella antigen. Heat treatment of immune serum abolished the anti-trichinella IgE titer as determined by the PCA test but did not decrease either the electrical response of passively sensitized tissue to antigen or the anaphylactically mediated intestinal smooth muscle contractile response to antigen in the classical Schultz-Dale assay. These results strongly support the hypothesis that immunological responses directed against Trichinella Spiralis alter intestinal epithelial function and suggest that immediate hypersensitivity is the immunological basis of the response.^ Additional studies were performed to test the hypothesis that histamine and prostaglandins that are released from mucosal mast cells during IgE or IgG(,1) - antigen stimulated degranulation mediate electrophysiological changes in the intestinal epithelium that are reflective of Cl('-) secretion and mediated intracellularly by cAMP. Pharmacological and biochemical studies were performed to determine the physiological messengers and ionic basis of electrical alterations in small intestinal epithelium of the guinea pig during in vitro anaphylaxis. Results suggest that Cl('-) secretion mediated, in part, by cAMP contributes to antigen-induced jejunal ion transport changes and that histamine and prostaglandins are involved in eliciting epithelial responses. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human colon cancer cells, LS180 and 174T, exhibit monoclonal antibody (mAb) 1083-17-1A and 5E113 defined tumor associated antigens. By radioimmunoassay, LS180 cells expressed the highest amount of mAb1083 defined antigens among the cell lines tested. Another mAb, 5E113, competed with mAb1083 for binding to LS180 cells, suggesting that both mAbs might bind onto identical (or adjacent) epitopes. By Scatchard analysis, about one million copies of the epitopes were present on LS180 colon cancer cells. The affinity of mAb1083 binding to the cells was 2.97 x 10('10) M('-1); the Sipsian heteroclonality value of mAb1083 was 0.9, thus approximating a single clone of reactive antibody. The qualitative studies showed that the epitopes were probably not carbohydrate because of their sensitivity to proteinases and not to mixed glucosidases and neuraminidase. The tunicamycin homologue B(,2) inhibited the incoporation of ('3)H-labeled galactose but not uptake of ('35)S-labeled methionine, nor expression of monoclonal antibody defined antigens providing further evidence to exclude the possibility of carbohydrate epitopes. There was evidence that the epitope might be partially masked in its "native" conformation, since short exposure or low dose treatment with proteases increased mAbs binding. The best detergent for antigen extraction, as detected by dot blotting and competitive inhibition assays, was octylglucoside at 30 mM concentration. Three methods, immunoprecipitation, Western blotting and photoaffinity labeling, were used to determine the molecular nature of the antigens. These results demonstrated that the antibody bound both 43 K daltons (KD) and 22 KD proteins.^ An in vitro cell-mediated immune approach was also used to attempt identifying function for the antigens. The strategy was to use mAbs to block cytotoxic effector cell killing. However, instead of blocking, the mAb1083 and 5E113 showed strong antibody-dependent cell-mediated cytotoxicities (ADCCs) in the in vitro xenoimmune assay system. In addition, cytotoxic T lymphocytes (CTLs), natural killer cells, and K cell activity were found. Since even the F(ab')2 fragment of mAbs did not inhibit the cytolytic effect, the mAbs defined antigens may not be major target molecules for CTLs. In summary, two molecular species of tumor antigen(s) were identified by mAbs to be present on colon tumor cell lines, LS180 and LS174T. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment of mice with the immunomodulating agent, Corynebacterium parvum (C. parvum), was shown to result in a severe and long-lasting depression of splenic natural killer (NK) cell-mediated cytotoxicity 5-21 days post-inoculation. Because NK cells have been implicated in immunosurveillance against malignancy (due to their spontaneous occurrence and rapid reactivity to a variety of histological types of tumors), as well as in resistance to established tumors, this decreased activity was of particular concern, since this effect is contrary to that which would be considered therapeutically desirable in cancer treatment (i.e. a potentiation of antitumor effector functions, including NK cell activity, would be expected to lead to a more effective destruction of malignant cells). Therefore, an analysis of the mechanism of this decline of splenic NK cell activity in C.parvum treated mice was undertaken.^ From in vitro co-culturing experiments, it was found that low NK-responsive C. parvum splenocytes were capable of reducing the normally high-reactivity of cells from untreated syngeneic mice to YAC-1 lymphoma, suggesting the presence of NK-directed suppressor cells in C. parvum treated animals. This was further supported by the demonstration of normal levels of cytotoxicity in C. parvum splenocyte preparations following Ficoll-Hypaque separation, which coincided with removal of the NK-suppressive capabilities of these cells. The T cell nature of these regulatory cells was indicated by (1) the failure of C. parvum to cause a reduction of NK cell activity, or the generation of NK-directed suppressor cells in T cell-deficient athymic mice, (2) the removal of C. parvum-induced suppression by T cell-depleting fractionation procedures or treatments, and (3) demonstration of suppression of NK cell activity by T cell-enriched C. parvum splenocytes. These studies suggest, therefore, that the eventual reduction of suppression by T cell elimination and/or inhibition, may result in a promotion of the antitumor effectiveness of C. parvum due to the contribution of "freed" NK effector cell activity.^ However, the temporary suppression of NK cell activity induced by C. parvum (reactivity of treated mice returns to normal levels within 28 days after C. parvum injection), may in fact be favorable in some situations, e.g. in bone marrow transplantation cases, since NK cells have been suggested to play a role also in the process of bone marrow graft rejection.^ Therefore, the discriminate use of agents such as C. parvum may allow for the controlled regulation of NK cell activity suggested to be necessary for the optimalization of therapeutic regimens. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diarrhea is a major cause of morbidity and mortality worldwide. Shigella causes up to 20% of all diarrhea. Gut-level immunity and breast-feeding of infants are important factors in protection against shigellosis. The lumen of the gut is lined with lymphocytes which mediate natural killer cytotoxicity, NKC, and antibody-dependent cellular cytotoxicity, ADCC. NKC and ADCC are extracellular, nonphagocytic leukocyte killing mechanisms, which occur in the absence of complement, without prior antigen stimulation, and without regard to the major histocompatibility complex. In this study, virulent and avirulent shigellae were used as the target cells. Leukocytes from peripheral blood, breast milk, and guinea pig gut-associated tissues were used as effector cells. Adult human peripheral blood mononuclear cells and lymphocytes, but not macrophages or polymorphonuclear leukocytes, mediated NKC and ADCC at an optimal effector to target cell ratio of 100:1 in a 60 minute bactericidal assay. An antiserum dilution of 1:10 was optimal for ADCC. Whole, viable lymphocytes were necessary for cytotoxicity. Lymphocyte NKC, but not ADCC, was greatly enhanced by interferon. Lymphocyte NKC occurred against several virulent strains of S. sonnei and a virulent strain of S. flexneri. ADCC (using immune serum directed against S. sonnei) occurred against virulent S. sonnei, but not against avirulent S. sonnei or virulent S. flexneri. Lymphocyte ADCC was not inhibited by the presence of phenylbutazone or by pretreatment of lymphocytes with anti-HNK serum plus complement. Both adherent and non-adherent breast milk leukocytes mediated NKC and ADCC. Mononuclear cells from young children demonstrated normal ADCC, when compared to ADCC of adult cells. Neonatal cord blood and a CGD patient's peripheral blood mononuclear and ploymorphonuclear cells demonstrated high ADCC compared to adult cells. Intraepithelial lymphocytes, spleen cells, and peritoneal cells from normal guinea pigs demonstrated NKC and ADCC. Animals which had been starved and opiated were made susceptible to infection by Shigella. The susceptible animals demonstrated deficient NKC and ADCC with all three leukocyte populations. High NKC and ADCC activity of gut-associated leukocytes from human breast milk and guinea pig tissues may correlate with resistance to infection. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus aureus is a globally prevalent pathogen that can cause a wide variety of acute and chronic diseases in both adults and children, in both immune susceptible populations and healthy individuals. Its ability to cause persistent infections has been linked to multiple immune evasion strategies, including Efb-mediated complement inhibition. As new multi-drug-resistant strains emerge, therapeutic alternatives to traditional antibiotics must be developed. These experiments assessed the ability of healthy patient immunoglobulin to cleave Efb and disable the complement-inhibitory properties of Efb in vitro. Levels of immunoglobulin-mediated Efb catalysis varied both between immunoglobulin isoform/isotype and between individuals. Serum IgG showed the strongest catalytic activity of the immunoglobulin isotypes tested. Additionally, IgG hydrolyzed the virulence factor in a way that enabled only minimal binding to the complement component C3b, effectively blocking Efb-mediated inhibition of complement lysis. Salivary IgA and serum IgM did not block Efb-mediated inhibition of complement. Catalytic IgG selectively cleaved Efb and showed no cleavage of a variety of other proteins tested. Catalytic activity of IgG was inhibited by serine protease inhibitors, but not by other protease inhibitors, suggesting a serine-protease mechanism of catalysis. It is proposed that varying concentrations and activity levels of catalytic IgG between healthy individuals and those with current or recurrent S. aureus infections in both adult and pediatric populations be studied in order to assess the potential effectiveness of passive immunization therapy with catalytic monoclonal IgG. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human peripheral blood lymphocytes (PBL) cultured for varying lengths of time in IL-2 are able to mediate antibody independent cellular cytotoxicity (AICC) as well as antibody dependent cellular cytotoxicity (ADCC) against a wide range of tumor targets. The objective of our study is to determine the cytotoxic potential of the subset of LAK cells involved in ADCC, the tumor recognition mechanism in ADCC, the kinetics of ADCC mediated by PBL cultured under various conditions and the role of TNF-$\alpha$ in the development and maturation of ADCC effectors in the LAK population.^ The model system in this study for ADCC used a monoclonal antibody 14G2a (IgG2a), that recognizes the GD2 epitope on human melanoma cell line, SK-Mel-1. The target recognition mechanism operative in AICC (traditionally known as lymphokine activated killing or LAK) is an acquired property of these IL-2 activated cells which confers on them the unique ability to distinguish between tumor and normal cells. This recognition probably involves the presence of a trypsin sensitive N-linked glycoprotein epitope on tumor cells. Proteolytic treatment of the tumor cells with trypsin renders them resistant to AICC by PBL cultured in IL-2. However, ADCC is unaffected. This ADCC, mediated by the relatively small population of cells that are positive for the Fc receptor for IgG (FcR), is an indication that this subset of "LAK" cells does not require the trypsin sensitive epitope on tumor cells to mediate killing. Enriching PBL for FcR+ cells markedly enhanced both AICC and ADCC and also reduced the IL-2 requirement of these cells.^ The stoichiometry of Fc receptor (FcR) expression on the cytotoxic effectors does not correlate with ADCC lytic activity. Although FcRs are necessary to mediate ADCC, other factors, appear to regulate the magnitude of cytolytic activity. In order to investigate these putative factors, the kinetics of ADCC development was studied under various conditions (in IL-2 (10u/ml) and 100u/ml), in IL-2(10u/ml) + TNF$\alpha$ (500u/ml) and in TNF-$\alpha$ (500u/ml) alone). Addition of exogenous TNF-$\alpha$ into the four hour cytotoxicity assay did not increase ADCC, nor did anti-TNF antibodies result in inhibition. On the other hand, addition of anti-TNF antibodies to PBL and IL-2 for 24 hours, resulted in a marked inhibition of the ADCC, suggesting that endogenous TNF-$\alpha$ is obligatory for the maturation and differentiation of ADCC effectors. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cutaneous exposure to ultraviolet-B radiation (UVR) results in the suppression of cell-mediated immune responses such as contact hypersensitivity (CHS) and delayed-type hypersensitivity (DTH). This modulation of immune responses is mediated by local or systemic mechanisms, both of which are associated with the generation of antigen-specific suppressor T lymphocytes (Ts). UV-induced Ts have been shown to be CD3+CD4+CD8 − T cells that control multiple immunological pathways. However, the precise mechanisms involved in the generation and function of these immunoregulatory cells remain unclear. We investigated the cellular basis for the generation of UV-induced Ts lymphocytes in both local and systemic models of immune suppression, and further examined the pleiotrophic function of these immunoregulatory cells. ^ We used Thy1.1 and Thy1.2 congenic mice in a draining lymph node (DLN) cell transfer model to analyze the role played by epidermal Langerhans cells in the generation of Ts cells. We demonstrate that T cells tightly adhered to antigen-presenting cells (APC) from UV-irradiated skin are the direct progenitors of UV-induced Ts lymphocytes. Our studies also reveal that UV-induced DNA-damage in the form of cyclobutyl pyrimidine dimers (CPD) in the epidermal APC is crucial for the altered maturation of these adherent T cells into Ts. ^ We used TCR transgenic mice in an adoptive transfer model and physically tracked the antigen-specific clones during immune responses in unirradiated versus UV-irradiated mice. We demonstrate that UV-induced Ts and effector TDTH cells share the same epitope specificity, indicating that both cell populations arise from the same clonal progenitors. UVR also causes profound changes in the localization and proliferation of antigen-specific T cells during an immune response. Antigen-specific T cells are not detectable in the DLNs of UV-irradiated mice after 3 days post-immunization, but are found in abundance in the spleen. In contrast, these clones continue to be found in the DLNs and spleens of normal animals several days post-immunization. Our studies also reveal that a Th2 cytokine environment is essential for the generation of Ts in UV-irradiated mice. ^ The third part of our study examined the pleiotrophic nature of UV-induced Ts. We used a model for the induction of both cellular and humoral responses to human gamma-globulin (HGG) to demonstrate that UV-induced Ts lymphocytes can suppress DTH as well as antibody responses. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ErbB2 overexpression in breast tumors increases metastasis, angiogenesis, and reduces survival. To study ErbB2 signaling mechanisms in metastasis and angiogenesis, a spontaneous metastasis assay was performed using human breast cancer cells transfected with constitutively active ErbB2 kinase (V659E), an ErbB2 kinase-dead mutant (K753M), or vector control. Mice injected with V659E had increased metastasis and tumor microvessel density; and the increased angiogenesis in vivo from the V659E transfectants paralleled increased angiogenic potential in vitro, which resulted from increased VEGF by increased protein synthesis. This appeared to be mediated through a PI3K, Akt, mTOR, p70S6K-signaling pathway. Furthermore, V659E xenografts had significantly increased phosphorylated Akt, phosphorylated p70S6K, and VEGF compared with control. To validate the clinical relevance of these findings, human breast tumor samples were examined. Tumors overexpressing ErbB2 correlated with p70S6K phosphorylation and VEGF expression, which significantly correlated with higher levels of Akt and mTOR phosphorylation. Additionally, patients with tumors having increased p70S6K phosphorylation showed a trend for worse disease-free survival and increased metastasis. Together, ErbB2 increases VEGF expression by activating the p70S6K signaling pathway, which may serve as targets for antiangiogenic and antimetastatic therapies. ^ Herceptin is an anti-ErbB2 antibody that demonstrated anti-tumor function, especially in combination with other chemotherapies such as Taxol, in patients with ErbB2-overexpressing tumors. Since the repeated administration of low-dose chemotherapy endorsed an antiangiogenic effect in vitro, and Herceptin was shown to inhibit angiogenesis in tumor xenografts, I investigated whether combined Taxol plus Herceptin treatment inhibits ErbB2-mediated angiogenic responses more effectively. Mice with ErbB2-overexpressing xenografts were treated with control, Herceptin, Taxol, or combination Herceptin plus Taxol. Mice treated with the combination exhibited reduced tumor volumes, tumor microvessel densities, and lung metastasis; and ErbB2-overexpressing cells treated with the combination secreted less VEGF, and stimulated less endothelial cell migration. Furthermore, Akt phosphorylation contributed to VEGF upregulation and was most effectively reduced by combination treatment. ^ In summary, ErbB2 activates signaling to Akt and p70S6K leading to increased VEGF and angiogenesis. Combination Herceptin plus Taxol treatment most effectively inhibited ErbB2-mediated angiogenesis, resulting in pronounced tumoricidal effects, and may be mediated through reduction of phosphorylated Akt, a positive regulator in the p70S6K pathway. ^