9 resultados para androgen receptor

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein (p44/WDR77) and found that it plays a critical role in the control of proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44 gene in the mouse brain caused accelerated aging with dramatic astrogliosis. The p44/WDR77 is expressed in astrocytes and loss of p44/WDR77 expression in astrocytes leads to astrogliosis. Our results reveal a novel role of p44/WDR77 in astrocytes, which may explain the well-documented role of androgens in suppression of astrogliosis. While many of detailed mechanisms of astrocyte activation remain to be elucidated, a number pathways have been implicated in astrocyte activation including p21Cip1 and the NF-kB pathway. Astrocytic activation induced by p44/WDR77 gene deletion was associated with a significant increase of p21Cip1 expression and NF-kB activation characterized by p65 nuclear localization. We found that down-regulation of p21Cip1 expression inhibited astrocyte activation induced by the p44/WDR77 deletion and was accompanied by a decreased p65 nuclear localization. While p21Cip1 role in astrocyte activation and NF-kB activation is not well understood, studies of other cell cycle regulators have implicated cell cycle control systems as modulators of astrocyte activation, thus p21Cip1 could induce secondary effect to induce p65 nuclear localization. However, p65 knockdown completely relieved the inhibition of astrocyte growth induced by the p44/WDR77 deletion, while p21Cip1 knockdown only partially recovered this inhibition. Thus, NF-kB activity performs additional regulatory actions not mediated by p21Cip1. These analyses imply that p4/WDR77 suppresses astrocyte activation through modulating p21Cip1 expression and NF-kB activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously reported androgen receptor concentrations in rat testis and testicular cell types have varied widely. In the studies reported here a nuclear exchange assay was established in rat testis in which exchange after 86 hours at 4$\sp\circ$C was greater than 85% complete and receptor was stable. Receptor concentration per DNA measured by exchange declined between 15 and 25 days of age in the rat testis, then increased 4-fold during sexual maturation. Proliferation of germ cells which had low receptor concentration appeared to account for the early decline in testicular receptor concentration, whereas increase in receptor number per Sertoli cell between 25 and 35 days of age contributed to the later increase. Increase in Leydig cell number during maturation appeared to account for the remainder of the increase due to the high receptor concentration in these cells. Detailed studies showed that other possible explanations for changes in receptor number (e.g. shifts in receptor concentration between the cytosol and nuclear subcellular compartments or changes in the affinity of the receptor for its ligands) were not likely.^ Androgen receptor dynamics in testicular cells showed rapid, specific uptake of ($\sp3$H) -testosterone that was easily blocked by unlabeled testosterone (RA of 7 nM in both cell types), and medroxyprogesterone acetate (RA of 28 and 16 nM in Sertoli and peritubular cells, respectively), but not as well by the anti-androgens cyproterone acetate (RA of 116 and 68 nM) and hydroxyflutamide (RA of 300 and 180 nM). The affinity of the receptor for the ligand dimethylnortestosterone was similar in the two cell types (K$\rm\sb{d}$ values of 0.78 and 0.71 nM for Sertoli and peritubular cells) and was virtually identical with the affinity of the whole testis receptor (0.89 nM). Medroxyprogesterone acetate and testosterone significantly increased nuclear androgen receptor concentration relative to untreated controls in Sertoli and peritubular cells, whereas hydroxyflutamide and cyproterone acetate did not. Despite the different embryological origins of peritubular and Sertoli cells, their responses to both androgens and anti-androgens were similar. In addition, these studies suggest that peritubular cells are as likely as Sertoli cells to be primary androgen targets. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is the most devastating disease that has tremendous impacts on public health. Many efforts have been devoted to fighting cancer through either translational or basic researches for years. Nowadays, it emerges the importance to converge these two research directions and complement to each other for battling with cancer. Thus, our study aims at both translational and basic research directions. The first goal of our study is focus on translational research to search for new agents targeting prevention and therapy of advanced prostate cancer. Hormone refractory prostate cancer is incurable and lethal. Androgen receptor (AR) mediates androgen's effect not only on the tumor initiation but also plays the major role in the relapse transition of prostate cancer. Here we demonstrate that emodin, a natural compound, can directly target AR to suppress prostate cancer cell growth in vitro and prolong the survival of C3(1)/SV40 transgenic mice in vivo. Emodin treatment resulted in repressing androgen-dependent transactivation of AR by inhibiting AR nuclear translocation. Emodin decreased the association of AR and heat shock protein 90 and increased the association of AR and MDM2, which in turn, induces AR degradation through a proteasome-mediated pathway in a ligand independent manner. Our work indicates a new mechanism for the emodin-mediated anticancer effect and justifies further investigation of emodin as a therapeutic and preventive agent for prostate cancer. The second goal of our study is try to elucidate the fundamental tumor biology of cancer progression then provide the rationale to develop more efficient therapeutic strategy. Enhancer of zeste homologue 2 (EZH2) plays an important role in many biological processes through its intrinsic methyltransferase activity to trimethylate lysine 27 in histone H3. Although overexpression of EZH2 has been shown to be involved in cancer progression, the detailed mechanisms are elusive. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding the binding to its substrate histone H3, resulting in a decrease of lysine 27 trimethylation and derepression of silenced genes, thus promotes cell proliferation and tumorigenicity. Our results also show that histone methylation is not permanent but regulated in a dynamic manner and that the Akt signaling pathway is involved in the regulation of this epigenetic modification through phosphorylation of EZH2, thus contributing to oncogenic processes. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Steroid hormones regulate target cell function via quantitative and qualitative changes in RNA and protein synthesis. In the testis, androgens are known to play an important role in the regulation of spermatogenesis. The Sertoli cell (SC), whose function is thought to be supportive to the developing germ cell, has been implicated as an androgen target cell. Although cytoplasmic androgen receptors and chromatin acceptor sites for androgen-receptor complexes have been found in SC, effects on RNA synthesis have not previously been demonstrated. In this study, SC RNA synthetic activity was characterized and the effect of testosterone on SC nuclear transcriptional activity in vitro assessed. SC exhibited two fold increases in RNA and ribonucleotide pool concentrations during sexual maturation. These changes appeared to correlate with a previously observed increase in protein concentration per cell over an age span of 15-60 days. Following incubation with ('3)H-uridine, SC from older animals incorporated more label into RNA than SC from younger animals. Since the relative concentration of cytidine nucleotides was higher in SC from older rats, the age-related increase in tritium incorporation may reflect an associated increase in incorporation of ('3)H-CMP into RNA. Alternatively, the enhanced labeling may be the result of either a change in the base composition of the RNA resulting in a higher proportion of CMP and UMP in the RNA, or compartmentalization of the nucleotide pools. The physiologic consequences of these maturational alterations of nucleotide pools remains to be elucidated. RNA polymerase activities were characterized in intact nuclei obtained from cultured rat SC. (alpha)-Amanitin resistant RNA polymerase I+III activity was identical when measured in low or high ionic strength (0.05 M or 0.25 M ammonium sulfate (AS)) in the presence of MnCl(,2) or MgCl(,2), with a divalent cation optimum of 1.6 mM. RNA polymerase II was most active in 0.25 M AS and 1.6 mM MnCl(,2). The apparent Km of RNA polymerase II for UTP was 0.016 mM in 0.05 M AS and 0.037 mM in 0.25 M AS. The apparent Km values for total polymerase activity was 0.008 mM and 0.036 mM at low and high ionic strenghts, respectively. These data indicate that Sertoli cell RNA polymerase activities have catalytic properties characteristic of eukaryotic polymerase activities in general. In the presence of 21 (mu)M testosterone, RNA polymerase II activity increased two fold at 15 minutes, then declined but was still elevated over control values six hours after androgen addition. Polymerase I+III activity was not greatly affected by testosterone. The stimulation of polymerase II measured at 15 minutes was dose-dependent, with a maximum at 0.53 nM and no further stimulation up to 10('-5) M (ED(,50) = 0.25 nM testosterone), and was androgen specific. The results of preliminary RNA isolation and characterization experiments suggested that the synthesis of several species of RNA was enhanced by testosterone administration. These findings have great potential importance since they represent the first demonstration of a direct effect of androgens on the transcriptional process in the Sertoli cell. Furthermore, the results of these studies constitute further evidence that the Sertoli cell is a target for androgen action in the testis. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The progression of hormone responsive to hormone refractory prostate cancer poses a major clinical challenge in the successful treatment of prostate cancer. The hormone refractory prostate cancer cells exhibit resistance not only to castrate levels of testosterone, but also to other therapeutic modalities and hence become lethal. Currently, there is no effective treatment available for managing this cancer. These observations underscore the urgency to investigate mechanism(s) that contribute to the progression of hormone-responsive to hormone-refractory prostate cancer and to target them for improved clinical outcomes. Tissue transglutaminase (TG2) is a multifunctional pro-inflammatory protein involved in diverse physiological processes such as inflammation, tissue repair, and wound healing. Its expression is also implicated in pathological conditions such as cancer and fibrosis. Interestingly, we found that the androgen-independent prostate cancer cell lines, which lacked androgen receptor (AR) expression, contained high basal levels of tissue transglutaminase. Inversely, the cell lines that expressed androgen receptor lacked transglutaminase expression. This attracted our attention to investigate the possible role this protein may play in the progression of prostate cancer, especially in view of recent observations that its expression is linked with increased invasion, metastasis, and drug resistance in multiple cancer cell types. The results we obtained were rather surprising and revealed that stable expression of tissue transglutaminase in androgen-sensitive LNCaP prostate cancer cells rendered these cells independent of androgen for growth and survival by silencing the AR expression. The AR silencing in TG2 expressing cells (TG2-infected LNCaP and PC-3 cells) was due to TG2-induced activation of the inflammatory nuclear transcription factor-kB (NF-kB). Thus, TG2 induced NF-kB was found to directly bind to the AR promoter. Importantly, TG2 protein was specifically recruited to the AR promoter in complex with the p65 subunit of NF-kB. Moreover, TG2 expressing LNCaP and PC-3 cells exhibited epithelial-to-mesenchymal transition, as evidenced by gain of mesenchymal (such as fibronectin, vimentin, etc.) and loss of epithelial markers (such as E-cadherin, b-catenin). Taken together, these results suggested a new function for TG2 and revealed a novel mechanism that is responsible for the progression of prostate cancer to the aggressive hormone-refractory phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prostate cancer (PC) is a significant economic and health burden in the U.S. and Europe but its causes are largely unknown. The most significant risk factors (after gender) are age and family history of the disease. A gene with high penetrance but low frequency on chromosome 1q, HPC 1, has been suggested to cause a proportion of the familial aggregation of PC but other more common genes, conferring less risk, are also thought to contribute to disease predisposition. We have pursued a strategy to study both types of genetic risk in PC. To identify high penetrance genes, affected men from thirteen families have been genotyped for genetic linkage analysis at six microsatellite markers spanning 45 cM of 1q24-25. Both LOD score and non-parametric statistics provide no significant support for HPC1 in this genomic region, although 3 of the families did combine to produce a LOD score of 0.9. These families will be included in a genome wide search for other PC predisposition genes as part of a multinational collaboration.^ For study of common genetic factors in PC development, leukocyte DNA samples from an unselected series of 55 patients and 67 controls have been examined for genetic differences in two other candidate genes, the androgen receptor gene, hAR, at Xq11-12, and the vitamin D receptor gene, hVDR, at 12q12-14. hAR was typed for two trinucleotide repeat length polymorphisms, (CAG)$\rm\sb{n}$ and (GGC)$\rm\sb{n},$ encoding polyglutamine and polyglycine tracts, respectively, which have been implicated in PC susceptibility. These data, combined with similarly processed patients and controls from the U.K. show no consistent association of allele length with PC risk. A novel finding, however, has been a significant association between the number of GGC repeats and the length of time between diagnosis and relapse in stage T1-T4 Caucasian patients irrespective of therapy and age of the patient. Of 49 patients who relapsed out of 108 entering the study, those with 16 or fewer GGC repeats had an average relapse-free-period of 101 (+/$-$7.7) months while for those with more than 16 repeats the period averaged 48 (+/$-$2.9) months, a difference of 2.1 fold or 4.4 years.^ The second gene, hVDR, was genotyped at two polymorphisms, a synonymous C/T substitution in exon 9 identified by differential TaqI enzymatic digestion and a variable length polyA tract in the 3$\sp\prime$ UTR. Although these polymorphisms are in strong linkage disequilibrium only the polyA region showed a possible association with PC risk. Men homozygous for alleles with fewer than 18 A's had an increased risk (OR = 3.0, p = 0.0578) compared to controls. This result is opposite to the findings of others and may either indicate off-setting random errors which together balance out to no significant overall effect or reflect more complex genetic and/or environmental associations.^ Overall, this research suggests that single gene familial predisposition may be less prominent in PC than in other cancers and that the characteristics of PC pathology may be useful in identifying the effects of common genetic factors. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kinases are part of a complex network of signaling pathways that enable a cell to respond to changes in environmental conditions in a regulated and coordinated way. For example, Glycogen Synthase Kinase 3 beta (GSK3β) modulates conformational changes, protein-protein interaction, protein degradation, and activation of unique domains in proteins that transduce signals from the extracellular milieu to the nucleus. ^ In this project, I investigated the expression and function that GSK3β exhibits in prostate cells. The capacity of GSK3β to regulate two transcription factors (JUN and CREB), which are known to be inversely utilized in prostate tumor cells, was measured. JUN/AP1 is constitutively activated in PC-3 cells; whereas, CREB/CRE activity is ∼20 fold less than the former. GSK3β overexpression obliterates JUN/AP1 activity. With respect to CREB GSK3β increases CREB/CRE activity. Cellular levels of active GSK3β can determine whether JUN or CREB is preferentially active in the PC-3s. Theoretically, in response to a particular cellular context or stimulus, a cell may coordinate JUN and CREB function by regulating GSK3β.^ A comparison of various prostate cell lines showed that active GSK3β is less expressed in normal prostate epithelial cells than in tumor cells. Differentially expressed active (GSK3β) may correlate with progression of prostate carcinoma. If a known marker associated with carcinoma of the prostate could be shown to be regulated by GSK3β then, further study of GSK3β may lead to a better understanding of both possible prevention of the disease and improved therapy for advanced stages. ^ The androgen receptor (AR) is an intriguing phosphoprotein whose regulation is potentially determined by a variety of kinases. One of these is (GSK3β) I found that (GSK3β) is a regulator of the androgen receptor in both the unliganded and liganded states. It can inhibit AR function as measured by reporter assays. Also, GSK3β associates with the AR at the DNA binding domain because deletion constructs expressing either the n-terminus or the c-terminus (both having the DBD in common) immunoprecipitated with GSK3β. Increased understanding of how GSK3β functions in prostate cancer would provide clues into how (1) certain signal pathways are coordinated and (2) the androgen receptor may be regulated. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell to cell adhesion molecule (CEACAM1), a type II tumor suppressor, has been found to be down-regulated in prostate cancer cells. The mechanism that causes CEACAM1's down-regulation in tumorigenesis is unknown. Here we show that the transcriptional activity of CEACAM1 is decreased in prostate cancer cells. This decrease is not due to methylation of the CEACAM1's promoter, but rather to the alteration of transcription factors regulating CEACAM1 expression. ^ Since androgen/androgen receptors (AR) are potent regulators of prostate growth and differentiation, their role on CEACAM1 gene transcription was examined. The androgen receptor could directly increase CEACAM1 transcriptional activity in a ligand dependent manner by interacting with an AR consensus element that resides in the CEACAM1 promoter. However, AR binding to the CEACAM1 promoter is not related to the loss of CEACAM1 during prostate cancer progression. ^ Further analysis enabled us to determine the particular region in the CEACAM1 promoter that mediates a decrease in CEACAM1 transcriptional activity in prostate cancer cells. Upon further examination, we found that this CEACAM1 promoter region interacts with the Sp1, Sp2, and Sp3 transcription factors. However, only Sp2 expression was found to increase in prostate cancer cells. Inhibiting Sp2 from binding to the CEACAM1 promoter caused an increase in CEACAM1 transcriptional activity in prostate cancer cells. In addition, over-expressing Sp2 in normal prostate cells resulted in a decrease in CEACAM1 transcriptional activity and endogenous protein expression. These observations suggest that Sp2 is a transcription repressor of CEACAM1. Furthermore, prostate cancer cells treated with trichostatin A (TSA), a specific histone deacetylase (HDAC) inhibitor, activated CEACAM1 transcriptional activity. This implies that HDACs are involved in CEACAM1 transcriptional activity. Mutation of the Sp2 DNA binding region on the CEACAM1 promoter inhibited TSA activation of CEACAM1 transcriptional activity. This indicates that HDACs inhibit CEACAM1 transcriptional activity through Sp2. Base on these results, we propose that Sp2 is critical for down-regulating CEACAM1 expression, and one mechanism by which Sp2 represses CEACAM1 expression is by recruiting HDAC to the CEACAM1 promoter in prostate cancer cells. Collectively, these findings provide novel insights into mechanisms that cause the down-regulation of CEACAM1 expression in prostate cancer cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One growth factor receptor commonly altered during prostate tumor progression is the epidermal growth factor receptor (EGFR). EGFR signaling regulates Erk1/2 phosphorylation through multiple mechanisms. We hypothesized that PKC isozymes play a role in EGFR-dependent signaling, and that through PKC isozyme selective inhibition, EGFR-dependent Erk1/2 activation can be attenuated in AICaP cells. ^ To test the hypothesis, PKC activation was induced by 12-O-tetradecanoyi-phorbol-13-acetate (TPA) in PC-3 cells. As a result, Erk1/2 was activated similarly to what was observed upon EGF stimulation. EGF-induced Erk1/2 activation in PC-3 cells was PKC-dependent, as demonstrated through use of a selective PKC inhibitor, GF109203X. This provides evidence for PKC regulatory control over Erk1/2 signaling downstream of EGFR. Next, we demonstrated that when PKC was inhibited by GF109203X, EGF-stimulated Erk1/2 activation was inhibited in PC-3, but not DU145 cells. TPA-stimulated Erk1/2 activation was EGFR-dependent in both DU145 and PC-3 cells, demonstrated through abrogation of Erk1/2 activation by a selective EGFR inhibitor AG1478. These data support PKC control at or upstream of EGFR in AICaP cells. We observed that interfering with ligand/EGFR binding abrogated Erk1/2 signaling in TPA-stimulated cells, revealing a role for PKC upstream of EGFR. ^ Next, we determined which PKC isozymes might be responsible for Erk1/2 regulation. We first determined that human AICaP cell lines express the same PKC isozymes as those observed in clinical prostate cancer specimens (α, ϵ, &zgr;, ι and PKD). Isozyme-selective methods were employed to characterize discrete PKC isozyme function in EGFR-dependent Erk1/2 activation. Pharmacologic inhibitors implicated PKCα in TPA-induced EGFR-dependent Erk1/2 activation in both PC-3 and DU145 cells. Further, the cPKC-specific inhibitor, Gö6976 decreased viablilty of DU145 cells, providing evidence that PKCα is necessary for growth and survival. Finally, resveratrol, a phytochemical with strong cancer therapeutic potential inhibited Erk1/2 activation, and this correlated with selective inhibition of PKCα. These results demonstrate that PKC regulates pathways critical to progression of CaP cells, including those mediated by EGFR. Thus, PKC isozyme-selective targeting is an attractive therapeutic strategy, and understanding the role of specific PKC isozymes in CaP cell growth and survival may aid in development of effective, non-toxic PKC-targeted therapies. ^