5 resultados para adhesion by chemical bonding

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

$\beta$1,4-Galactosyltransferase (GalTase) is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs different functions. In the trans-Golgi complex, GalTase participates in oligosaccharide biosynthesis as do other glycosyltransferases. GalTase is also found on the cell surface, where it associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we know much regarding GalTase function on the cell surface, little is known about the mechanisms underlying its transport to the plasma membrane. Cloning of the GalTase gene revealed that there are two GalTase proteins (i.e., long and short) with different size cytoplasmic tails. This raises the possibility that differences in the cytoplasmic domain of GalTase may influence its subcellular distribution. The object of this study was to examine this hypothesis directly through the use of molecular, immunological, and biochemical approaches.^ To examine whether the two GalTase proteins are targeted to different subcellular compartments, F9 embryonal carcinoma cells were transfected with either long or short GalTase cDNAs and intracellular and cell surface enzyme levels measured. Cell surface GalTase activity was enriched in cells overexpressing the long, but not the form of short GalTase. Furthermore, a dominant negative mutation in cell surface GalTase was created by transfecting cells with GalTase cDNAs encoding a truncated version of long GalTase devoid of the extracellular catalytic domain. Overexpressing the complete cytoplasmic and transmembrane domains of long GalTase led to a loss of GalTase-dependent cellular adhesion by specifically displacing surface GalTase from its cytoskeletal associations. In contrast, overexpressing the analogous truncated protein of short GalTase had no effect on cell adhesion. Finally, chloramphenicol acetyltransferase (CAT) reporter proteins were used to determine directly whether the cytoplasmic domains of long and short GalTase were responsible for differential subcellular distribution. The cytoplasmic and transmembrane domains of long GalTase led to CAT expression on the ceil surface and its association with the detergent-insoluble cytoskeleton; the analogous fusion protein containing short GalTase was restricted to the Golgi compartment. These results suggest that the cytoplasmic domain unique to long GalTase is responsible for targeting a portion of this protein to the cell surface and associating it with the cytoskeleton, enabling it to function as a cell adhesion molecule. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of colon cancer has taken advantage of the development of a model in animals in which tumors in the colon are easily induced by chemical treatment. When 1,2-dimethylhydrazine (DMH) is injected into rats tumor growth is observed in colon in preference to other tissues. This observation led us to investigate the Cytochrome P450 system in colon and its participation in the particular “colon sensitivity” to DMH. It has been established that the Cytochrome P450 system participates in the metabolism of DMH and the methyl carbonium product of Cytochrome P450 activation of DMH is responsible for DNA damage which is considered an initial step to carcinogenesis. The Cytochrome P450 system is a reasonable place to search for an explanation of this organotropic effect of DMH and we feel that the knowledge obtained from this study can take us closer to understanding the development of colonic malignancy. In our study we used a human colon cell line (LS174T) treated with DMH. The Cytochrome P450 system in the cells was manipulated with inducers of different isoforms of Cytochrome P450. The effect of DMH on colon cells was measured by determination of O-6-methylguanine which is a DNA adduct derived from the metabolism of this chemical and is associated with development of tumors. Our results support the hypothesis that Cytochrome P450 plays an important role in the damage to cellular DNA by DMH. This damage is increased after induction of Cytochromes P450 1A1 and 2E1. The effect of inhibition of the methyltransferase and glutathione systems on protection against DMH damage in colon demonstrated the importance of the protective role of the former and the lack of effective protection of the latter system. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Reoviridae virus family is a group of economically and pathologically important viruses that have either single-, double-, or triple-shelled protein layers enclosing a segmented double stranded RNA genome. Each virus particle in this family has its own viral RNA dependent RNA polymerase and the enzymatic activities necessary for the mature RNA synthesis. Based on the structure of the inner most cores of the viruses, the Reoviridae viruses can be divided into two major groups. One group of viruses has a smooth surfaced inner core, surrounded by complete outer shells of one or two protein layers. The other group has an inner core decorated with turrets on the five-fold vertices, and could either completely lack or have incomplete outer protein layers. The structural difference is one of the determinant factors for their biological differences during the infection. ^ Cytoplasmic polyhedrosis virus (CPV) is a single-shelled, turreted virus and the structurally simplest member in Reoviridae. It causes specific chronic infections in the insect gut epithelial cells. Due to its wide range of insect hosts, CPV has been engineered as a potential insecticide for use in fruit and vegetable farming. Its unique structural simplicity, unparalleled capsid stability and ease of purification make CPV an ideal model system for studying the structural basis of dsRNA virus assembly at the highest possible resolution by electron cryomicroscopy (cryoEM) and three-dimensional (3D) reconstruction. ^ In this thesis work, I determined the first 3D structure of CPV capsids using 100 kV cryoEM. At an effective resolution of 17 Å, the full capsid reveals a 600-Å diameter, T = 1 icosahedral shell decorated with A and B spikes at the 5-fold vertices. The internal space of the empty CPV is unoccupied except for 12 mushroom-shaped densities that are attributed to the transcriptional enzyme complexes. The inside of the full capsid is packed with icosahedrally-ordered viral genomic RNA. The interactions of viral RNA with the transcriptional enzyme complexes and other capsid proteins suggest a mechanism for RNA transcription and subsequent release. ^ Second, the interactions between the turret proteins (TPs) and the major capsid shell protein (CSPs) have been identified through 3D structural comparisons of the intact CPV capsids with the spikeless CPV capsids, which were generated by chemical treatments. The differential effects of these chemical treatment experiments also indicated that CPV has a significantly stronger structural integrity than other dsRNA viruses, such as the orthoreovirus subcores, which are normally enclosed within outer protein shells. ^ Finally, we have reconstructed the intact CPV to an unprecendented 8 Å resolution from several thousand of 400kV cryoEM images. The 8 Å structure reveals interactions among the 120 molecules of each of the capsid shell protein (CSP), the large protrusion protein (LPP), and 60 molecules of the turret protein (TP). A total of 1980 α-helices and 720 β-sheets have been identified in these capsid proteins. The CSP structure is largely conserved, with the majority of the secondary structures homologous to those observed in the x-ray structures of corresponding proteins of other reoviruses, such as orthoreovirus and bluetongue virus. The three domains of TP are well positioned to play multifunctional roles during viral transcription. The completely non-equivalent interactions between LPP and CSP and those between the anchoring domain of TP and CSP account for the unparalleled stability of this structurally simplest member of the Reoviridae. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galactosyltransferase (GalTase) is localized in the Golgi, where it functions in oligosaccharide synthesis, as well as on the cell surface where it serves as a cell adhesion molecule. GalTase-specific adhesions are functional in a number of important biological events, including F9 embryonal carcinoma (EC) cell adhesions. GalTase-based adhesions are formed by recognition and binding to terminal N-acetylglucosamine (GlcNAc) residues on its glycoprotein counterpart on adjacent cell surfaces. The object of this work has been to investigate the formation and function of GalTase-specific adhesions during F9 cell growth and differentiation. We initially investigated GalTase synthesis during differentiation and found that the increase in GalTase activity was specific for the Golgi compartment; surface GalTase levels remained constant during differentiation. These data indicated that the increase in cell adhesions expected with increased cell-matrix interaction in differentiated F9 cells is not the consequence of increased surface GalTase expression and, more interestingly, that the two pools of GalTase are under differential regulation. Synthesis and recognition of the consociate glycoprotein component was next investigated. Surface GalTase recognized several surface glycoproteins in a pattern that changes with differentiation. Uvomorulin, lysosome-associated membrane protein-1 (LAMP-1), and laminin were recognized by surface GalTase and are, therefore, potential components in GalTase-specific adhesions. Furthermore, these interactions were aberrant in an adhesion-defective F9 cell line that results, at least in part, from abnormal oligosaccharide synthesis. The function played by surface GalTase in growth and induction of differentiation was examined. Inhibition of surface GalTase function by a panel of reagents inhibited F9 cell growth. GalTase expression at both the transcription and protein levels were differentially regulated during the cell cycle, with surface expression greatest in the G1 phase. Disruption of GalTase adhesion by exposure to anti-GalTase antibodies during this period resulted in extension of the G2 phase, a result similar to that seen with agents known to inhibit growth and induce differentiation. Finally, other studies have suggested that a subset of cell adhesion molecules have the capability to induce differentiation in EC cells systems. We have determined in F9 cells that dissociating GalTase adhesion by galactosylation of and release of the consociate glycoproteins induces differentiation, as defined by increased laminin synthesis. The ability to induce differentiation by surface galactosylation was greatest in cells grown in cultures promoting cell-cell adhesions, relative to cultures with minimal cell-cell interactions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human pro-TNF-$\alpha$ is a 26 kd type II transmembrane protein, and it is the precursor of 17 kd mature TNF. Pro-TNF release mature from its extracellular domain by proteolytic cleavage between resideu Ava ($-$1) and Val (+1). Both forms of TNF are biologically active and the native form of mature TNF is a bell-shaped trimer. The structure of pro-TNF was studied both in intact cell system and in an in vitro translation system by chemical crosslinking. We found that human pro-TNF protein exist as a trimer in intact cells (LPS-induced THP-1 cells and TNF cDNA transfected COS-3 cells) and this trimeric structure is assembled intracellularly, possibly in the ER. By analysis several deletion mutants, we observed a correlation between expression of pro-TNF cytotoxicity in a juxtacrine fashion and detection of the trimer, suggesting the trimeric structure is very important for its biologic activity. With a series of deletion mutants in the linking domain, we found that the small deletion did not block the cleavage and large deletion did regardless of the presence or absence of the native cleavage site, suggesting that the length of the residues between the plasma membrane and the base of the trimer determines the rate of the cleavage, possibly by blocking the accessibility of the cleavage enzyme to its action site. Our data also suggest that the native cleavage site is not sufficient for the release of mature TNF and alternative cleavage site(s) exists. ^