16 resultados para Xenopus-oocytes

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amino acid glutamate is the primary excitatory neurotransmitter for the CNS and is responsible for the majority of fast synaptic transmission. Glutamate receptors have been shown to be involved in multiple forms of synaptic plasticity such as LTP, LTD, and the formation of specific synaptic connections during development. In addition to contributing to the plasticity of the CNS, glutamate receptors also are involved in, at least in part, various pathological conditions such as epilepsy, ischemic damage due to stroke, and Huntington's chorea. The regulation of glutamate receptors, particularly the ionotropic NMDA and AMPA/KA receptors is therefore of great interest. In this body of work, glutamate receptor function and regulation by kinase activity was examined using the Xenopus oocyte which is a convenient and faithful expression system for exogenous proteins. Glutamate receptor responses were measured using the two-electrode voltage clamp technique in oocytes injected with rat total forebrain RNA. NMDA elicited currents that were glycine-dependent, subject to block by Mg$\sp{2+}$ in a voltage-dependent manner and sensitive to the specific NMDA antagonist APV in a manner consistent with those types of responses found in neural tissue. Similarly, KA-evoked currents were sensitive to the specific AMPA/KA antagonist CNQX and exhibited current voltage relationships consistent with the calcium permeable type II KA receptors found in the hippocampus. There is evidence to indicate that NMDA and AMPA/KA receptors are regulated by protein kinase A (PKA). We explored this by examining the effects of activators of PKA (forskolin, 1-isobutyl-3-methylxanthine (IBMX) and 8-Br-cAMP) on NMDA and KA currents in the oocyte. In buffer where Ca$\sp{2+}$ was replaced by 2 mM Ba$\sp{2+},$ forskolin plus IBMX and 8-Br-cAMP augmented currents due to NMDA application but not KA. This augmentation was abolished by pretreating the oocytes in the kinase inhibitor K252A. The use of chloride channel blockers resulted in attenuation of this effect indicating that Ba$\sp{2+}$ influx through the NMDA channel was activating the endogenous calcium-activated chloride current and that the cAMP mediated augmentation was at the level of the chloride channel and not the NMDA channel. This was confirmed by (1) the finding that 8-Br-cAMP increased chloride currents elicited via calcium channel activation while having no effect on the calcium channels themselves and (2) the fact that lowering the Ba$\sp{2+}$ concentration to 200 $\mu$M abolished the augmentation NMDA currents by 8-Br-cAMP. Thus PKA does not appear to modulate ionotropic glutamate receptors in our preparation. Another kinase also implicated in the regulation of NMDA receptors, calcium/phospholipid-dependent protein kinase (PKC), was examined for its effects on the NMDA receptor under low Ba$\sp{2+}$ (200 $\mu$M) conditions. Phorbol esters, activators of PKC, induced a robust potentiation of NMDA currents that was blockable by the kinase inhibitor K252A. Furthermore activation of metabotropic receptors by the selective agonist trans-ACPD, also potentiated NMDA albeit more modestly. These results indicate that neither NMDA nor KA-activated glutamate receptors are modulated by PKA in Xenopus oocytes whereas NMDA receptors appear to be augmented by PKC. Furthermore, the endogenous chloride current of the oocyte was found to be responsive to Ba$\sp{2+}$ and in addition is enhanced by PKA. Both of these latter findings are novel. In conclusion, the Xenopus oocyte is a useful expression system for the analysis of ligand-gated channel activity and the regulation of those channels by phosphorylation. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A fundamental problem in developmental biology concerns the mechanisms involved in the establishment of the embryonic axis. We are studying Xenopus nuclear factor 7 (xnf7) which we believe to be involved in dorsal-ventral patterning in Xenopus laevis. Xnf7 is a maternal gene product that is retained in the cytoplasm during early embryogenesis until the mid-blastula transition (MBT) when it reenters the nuclei. It is a member of a novel zinc finger proteins, the B-box family, consisting mainly of transcription factors and protooncogenes.^ The xnf7 gene is reexpressed during embryogenesis at the gastrula-neurula stage of development, with its zygotic expression limited to the central nervous system (CNS). In this study we showed that there are two different cDNAs coding for xnf7, xnf7-O and xnf7-B. They differ by 39 amino acid changes scattered throughout the cDNA. The expression of both forms of xnf7 is limited primarily to the central nervous system (CNS) and dorsal axial structures during later stages of embryogenesis.^ In order to study the spatial and temporal regulation of the gene, we screened a Xenopus genomic library using part of xnf7 cDNA as a probe. A genomic clone corresponding to the xnf7-O type was isolated, its 5$\sp\prime$ putative regulatory region sequenced, and its transcriptional initiation site mapped. The putative promoter region contained binding sites for Sp1, E2F, USF, a Pu box and AP1. CAT/xnf7 fusion genes were constructed containing various 5$\sp\prime$ deleted regions of the xnf7 promoter linked to a CAT (Chloramphenicol Acetyl Transferase) reporter vector. These constructs were injected into Xenopus oocytes and embryos to study the regions of the xnf7 promoter responsible for basal, temporal and spatial regulation of the gene. The activity of the fusion genes was measured by the conversion of chloramphenicol to its acetylated forms, and the spatial distribution of the transcripts by whole mount in situ hybridization. We showed that the elements involved in basal regulation of xnf7 lie within 121 basepairs upstream of the transcriptional inititiation site. A DNase I footprint analysis performed using oocyte extract showed that a E2F and 2 Sp1 sites were protected. During development, the fusion genes were expressed following the MBT, in accordance with the timing of the endogenous xnf7 gene. Spatially, the expression of the fusion gene containing 421 basepairs of the promoter was localized to the dorsal region of the embryo in a pattern that was almost identical to that detected with the endogenous transcripts. Therefore, the elements involved in spatial and temporal regulation of the xnf7 gene during development were contained within 421 basepairs upstream of the transcriptional initiation site. Future work will further define the elements involved in the spatial and temporal regulation and the trans-factors that interact with them. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Xp95 is the Xenopus ortholog of a conserved family of scaffold proteins that have in common an N-terminal Bro1 domain and a C-terminal proline rich domain (PRD). The regulation of this protein family is poorly understood. We previously showed that Xp95 undergoes a phosphorylation-dependant gel mobility shift during meiotic maturation of Xenopus oocytes, the only natural biological system in which post-translational modifications of this family has been demonstrated. Here we characterized Xp95 phosphorylation via two approaches. First, we tested a series of Xp95 fragments for the ability to gel-shift during oocyte maturation, and found that a fragment containing amino acids 705-786 is sufficient to cause a gel-shift. This fragment is within the N-terminal region of Xp95's PRD (N-PRD). Second, we purified phosphorylated Xp95 and by mass spectrometry found that a 5080 Da peptide which maps to N-PRD (amino acids 706-756) contains two phosphorylation sites, one of which is T745, within the conserved CIN85 binding motif. By in vitro protein interaction assays, we that T745 is critical for CIN85/Xp95 interaction, and that Xp95 phosphorylation correlates with loss of binding to CIN85. We also show that an Alix fragment (amino acids 604-789) also undergoes a gel-shift during oocyte maturation and during colcemid-induced mitotic arrest of HeLa cells. These findings indicate that Xp95/Alix is phosphorylated on the PRD during M phase induction and that the PRD phosphorylation regulates partner protein interaction. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germ cell development is a highly coordinated process driven, in part, by regulatory mechanisms that control gene expression. Not only transcription, but also translation, is under regulatory control to direct proper germ cell development. In this dissertation, I have focused on two regulators of germ cell development. One is the homeobox protein RHOX10, which has the potential to be both a transcriptional and translational regulator in mouse male germ cell development. The other is the RNA-binding protein, Hermes, which functions as a translational regulator in Xenopus laevis female germ cell development. ^ Rhox10 is a member of reproductive homeobox gene X-(linked (Rhox) gene cluster, of which expression is developmentally regulated in developing mouse testes. To identify the cell types and developmental stages in which Rhox10 might function, I characterized its temporal and spatial expression pattern in mouse embryonic, neonatal, and adult tissues. Among other things, this analysis revealed that both the level and the subcellular localization of RHOX10 are regulated during germ cell development. To understand the role of Rhox10 in germ cell development, I generated transgenic mice expressing an artificial microRNA (miRNA) targeting Rhox10. While this artificial miRNA robustly downregulated RHOX10 protein expression in vitro, it did not significantly reduce RHOX10 expression in vivo. So I next elected to knockdown RHOX10 levels in spermatogonial stem cells (SSCs), which I found highly express both Rhox10 mRNA and RHOX10 protein. Using a recently developed in vitro culture system for SSCs combined with a short-hairpin RNA (shRNA) approach, I strongly depleted RHOX10 expression in SSCs. These RHOX10-depleted cells exhibited a defect in the ability to form stem cell clusters in vitro. Expression profiling analysis revealed many genes regulated by Rhox10, including many meiotic genes, which could be downstream of Rhox10 in a molecular pathway that controls SSC differentiation. ^ RNA recognition motif (RRM) containing protein, Hermes is localized in germ plasm, where dormant mRNAs are also located, of Xenopus oocytes, which implicates its role in translational regulator. To understand the function of Hermes in oocyte meiosis, I used a morpholino oligonucleotide (MO) based knockdown approach. Microinjection of Hermes MO into fully grown oocytes, which are arrested in meiotic prophase, caused acceleration of oocytes reentry into meiosis (i.e., maturation) upon progesterone induction. Using a candidate approach, I identified at least three targets of Hermes: Ringo/Spy, Xcat2, and Mos. Ringo/Spy and Mos are known to have functions in oocyte maturation, while Ringo/Spy, Xcat2 mRNA are localized in the germ plasm of oocytes, which drives germ cell specification after fertilization. This led me to propose that Hermes functions in both oocyte maturation and germ cell development through its ability to regulate 3 crucial target mRNAs. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone gene expression is replication-independent during oogenesis and early embryogenesis in amphibians; however, it becomes replication-dependent during later embryogenesis and remains replication-dependent through adulthood. In order to understand the mechanism for this switch in transcriptional regulation of histone gene expression during amphibian development, linker-scanning mutations were made in a Xenopus laevis H2B histone gene promoter by oligonucleotide site-directed mutagenesis and assayed by microinjection into oocytes and embryos. The Xenopus H2B gene has a relatively simple promoter containing several transcriptional regulatory elements, including TFIID, CCAAT, and ATF motifs, required for maximal transcription in both oocytes and embryos. Factors binding to the CCAAT and ATF motifs are present in oocytes and embryos and increase slightly in abundance during early development. A sequence (CTTTACAT) in the frog H2B promoter resembling the conserved octamer motif (ATTTGCAT), the target for cell-cycle regulation of a human H2B gene, is additionally required for maximal H2B transcription in frog embryos. Oocytes and embryos contain multiple octamer-binding proteins that are expressed in a sequential manner during early development. Sequences encoding three novel octamer-binding proteins were isolated from Xenopus cDNA libraries by virtue of their similarity with the DNA binding (POU) domain of the ubiquitously expressed transcription factor Oct-1. The protein encoded by one of these genes, termed Oct-60, was localized mainly in the cytoplasm of oocytes and was also present in early embryos until the gastrula stage of development. Proteins encoded by the other two genes, Oct-25 and Oct-91, were present in embryos after the mid-blastula stage of development and decreased by early neurula stage. The activity of the Xenopus H2B octamer motif in embryos is not specifically associated with increased binding by Oct-1 or the appearance of novel octamer-binding proteins but requires the presence of an intact CCAAT motif. We found that synergistic interactions among promoter elements are important for full H2B promoter activity. The results suggest that transcription of the Xenopus H2B gene is replication-dependent when it is activated at the mid-blastula stage of development and that replication-dependent H2B transcription is mediated by Oct-1. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xenopus ARVCF (xARVCF), a member of p120-catenin subfamily, binds cadherin cytoplasmic domains to enhance cadherin metabolic stability, or when dissociated, modulates Rho-family GTPases. We previously found that xARVCF binds directly to Xenopus KazrinA (xKazrinA), a widely expressed, conserved protein that bears little homology to established protein families. xKazrinA is also known to influence keratinocyte proliferation-differentiation and cytoskeletal activity. In my study, I first evaluated the expression pattern of endogenous Kazrin RNA and protein in Xenopus embryogenesis as well as in adult tissues. We then collaboratively predicted the helical structure of Kazrin’s coiled-coil domain, and I obtained evidence of Kazrin’s dimerization/oligomerization. In considering the intracellular localization of the xARVCF-catenin:xKazrin complex, I did not resolve xKazrinA in a larger ternary complex with cadherin, nor did I detect its co-precipitation with core desmosomal components. Instead, screening revealed that xKazrinA binds spectrin. This suggested a potential means by which xKazrinA localizes to cell-cell junctions, and indeed, biochemical assays confirmed a ternary xARVCF:xKazrinA:xβ2-spectrin complex. Functionally, I demonstrated that xKazrin stabilizes cadherins by negatively modulating the RhoA small-GTPase. I further revealed that xKazrinA binds to p190B RhoGAP (an inhibitor of RhoA), and enhances p190B’s association with xARVCF. Supporting their functional interaction in vivo, Xenopus embryos depleted of xKazrin exhibited ectodermal shedding, a phenotype that could be rescued with exogenous xARVCF. Cell shedding appeared to be caused by RhoA activation, which consequently altered actin organization and cadherin function. Indeed, I was capable of rescuing Kazrin depletion with ectopic expression of p190B RhoGAP. In addition, I obtained evidence that xARVCF and xKazrin participate in craniofacial development, with effects observed upon the neural crest. Finally, I found that xKazrinA associates further with delta-catenin and p0071-catenin, but not with p120-catenin, suggesting that Kazrin interacts selectively with additional members of the p120-catenin sub-family. Taken together, my study supports Kazrin’s essential role in development, and reveals KazrinA’s biochemical and functional association with ARVCF-catenin, spectrin and p190B RhoGAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maturation promoting factor (MPF), which is functionally defined by its ability to induce Xenopus oocyte maturation, is an M phase (meiosis and mitosis) specific activity that is present in all species tested. It was hypothesized that MPF is a universal trigger of the interphase to M phase transition during the cell cycle. The current model for the molecular basis of MPF is that MPF is a protein kinase having the cdc2 protein as its catalytic subunit and is identical to the M phase-specific histone H1 kinase. In the present study, I have shown that more than just cdc2 kinase contributes to MPF activity, and M phase-specific H1 kinase is composed of at least two entities, instead of just cdc2 kinase. Therefore, the simple model of MPF = cdc2 kinase = M phase-specific H1 kinase should be ruled out.^ My study began with the characterization of the mitosis-specific monoclonal antibody MPM-2. MPM-2 reacts specifically with M phase cells from different species by recognizing a discrete set of proteins once they are phosphorylated at the G$\sb2$/M transition. I found that phosphorylation of MPM-2 antigens coincided with the appearance of MPF activity during oocyte maturation stimulated by progesterone. If MPM-2 was injected into oocytes before the stimulation, MPF activity failed to appear, and the oocytes could not mature. Furthermore, MPM-2 was able to deplete MPF activity from M phase extracts. These results identified MPM-2 as a probe that recognizes either MPF itself or a regulator of MPF.^ Since M phase-specific H1 kinase was believed to be identical to cdc2 kinase and MPF, I proceeded to determine whether MPM-2 recognized the M phase-specific H1 kinase. I found that MPM-2 did recognize an M phase-specific H1 kinase. However, this kinase was not cdc2 kinase. This kinase (MPM-2 kinase) is present in a latent form in immature oocytes and is activated in tandem with the activation of MPF during oocyte maturation. It appears to accelerate progesterone-induced oocyte maturation. Therefore, MPM-2 kinase may be a novel positive regulator of MPF activation.^ MPM-2 depletes MPF activity, but not cdc2 kinase activity. This discrepancy caused me to question the equivalency of MPF with cdc2 kinase. I found that when a high percentage of MPF activity was recovered from gel filtration of mature oocyte extract, the recovered MPF activity was due to two factors, cdc2 kinase and a factor recognized by MPM-2. This factor might activate and stabilize cdc2 kinase. Identification of this factor in the present study may contribute to the understanding of the autoactivation of MPF. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I have cloned cDNAs corresponding to two distinct genes, Xlmf1 and Xlmf25, which encode skeletal muscle-specific, transcriptional regulatory proteins. These proteins are members of the helix-loop-helix family of DNA binding factors, and are most homologous to MyoD1. These two genes have disparate temporal expression patterns during early embryogenesis; although, both transcripts are present exclusively in skeletal muscle of the adult. Xlmf1 is first detected 7 hours after fertilization, shortly after the midblastula transition. Xlmf25 is detected in maternal stores of mRNA, during early cleavage stages of the embryo and throughout later development. Both Xlmf1 and Xlmf25 transcripts are detected prior to the expression of other, previously characterized, muscle-specific genes. The ability of Xlmf1 and Xlmf25 to convert mouse 10T1/2 fibroblasts to a myogenic phenotype demonstrates their activity as myogenic regulatory factors. Additionally, Xlmf1 and Xlmf25 can directly transactivate a reporter gene linked to the muscle-specific, muscle creatine kinase (MCK) enhancer. The functional properties of Xlmf1 and Xlmf25 proteins were further explored by investigating their interactions with the binding site in the MCK enhancer. Analysis of dissociation rates revealed that Xlmf25-E12 dimers had a two-fold lower avidity for this site than did Xlmf1-E12 dimers. Clones containing genomic sequence of Xlmf1 and Xlmf25 have been isolated. Reporter gene constructs containing a lac-z gene driven by Xlmf1 regulatory sequences were analyzed by embryo injections and transfections into cultured muscle cells. Elements within $-$200 bp of the transcription start site can promote high levels of muscle specific expression. Embryo injections show that 3500 bp of upstream sequence is sufficient to drive somite specific expression. EMSAs and DNAse I footprint analysis has shown the discrete interaction of factors with several cis-elements within 200 bp of the transcription start site. Mutation of several of these elements shows a positive requirement for two CCAAT boxes and two E boxes. It is evident from the work performed with this promoter that Xlmf1 is tightly regulated during muscle cell differentiation. This is not surprising given the fact that its gene product is crucial to the determination of cell fate choices. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genes of the basic helix-loop-helix transcription factor family have been implicated in many different developmental processes from neurogenesis to myogenesis. The recently cloned bHLH transcription factor, paraxis, has been found to be expressed in the paraxial mesoderm of the mouse suggesting a role for paraxis in the development of this mesodermal subtype which gives rise to the axial muscle, skeleton, and dermis of the embryo. In order to perform in vivo gain of function assays and obtain a better understanding of the possible roles of paraxis in mesodermal and somitic development, we have successfully identified homologues of paraxis in the frog, Xenopus laevis, where the process of mesodermal induction and development is best understood. The two homologues, Xparaxis-a and Xparaxis-b, are conserved with respect to their murine homologue in structure and expression within the embryo. Xparaxis genes are expressed immediately after gastrulation in the paraxial mesoderm of Xenopus embryos and are down regulated in the myotome of the mature somite with continued expression in the undifferentiated dermatome. Overexpression of Xparaxis-b in Xenopus embryos caused defects in the organization and morphology of the somites. This effect was not dependent on DNA binding of Xparaxis but is likely due to its dimerization with other bHLH factors. Co-injections with XE12 did not diminish the effects indicating that the defects were not the result of limiting amounts of XE12. We also demonstrated that Xparaxis does not cause obvious defects in the cell adhesions and movements required for proper mesoderm patterning during gastrulation. The paraxis proteins also lacked the ability to activate transcription as GAL4 fusion proteins in a GAL4 reporter assay, indicating that the genes may function more as modulators of the activity of dimerization partners than as positively acting cell determination factors. In agreement with this, Xparaxis is regulated in response to other pathways of bHLH gene action, in that XE12 can activate Xparaxis-b, in vivo. In addition we show regulation of Xparaxis in response to mMyoD induced myogenesis pathways, again suggesting Xparaxis plays an important role in the patterning and organization of the paraxial mesoderm. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many organisms, polarity of the oocyte is established post-transcriptionally via subcellular RNA localization. Many RNAs are localized during oogenesis in Xenopus laevis, including Xlsirts ( Xenopus laevis short interspersed repeat transcripts) [Kloc, 1993]. Xlsirts constitute a large family defined by highly homologous repeat units 79–81 nucleotides in length. Endogenous Xlsirt RNAs use the METRO (Message Transport Organizer) pathway of localization, where RNAs are transported from the nucleus to the mitochondrial cloud in stage I oocytes. Secondly, RNAs anchor at the vegetal pole in stage II oocytes. Exogenous Xlsirt RNAs can also utilize the Late pathway of localization, which involves localization to the vegetal cortex during stage III of oogenesis and results in RNAs anchored in the cortex of the entire vegetal hemisphere. ^ The Xlsirts localization signal is contained within the repeat region. This study was designed to test the hypothesis that there are cis -acting localization elements in Xlsirts, and that higher order structure plays a role. Results of experiments on Xlsirt P11, a 1700 basepair (bp) family member, led to the conclusion that a 137-bp fragment of the repetitive region is necessary and sufficient for METRO and Late pathway localization. This analysis definitively demonstrates that the Xlsirt localization signal for the METRO and Late pathways reside within the repetitive region and not within the flanking regions. Analysis of Xlsirt linker scanning mutations revealed two METRO-pathway specific subelements, and one Late-pathway specific subelement. Functional, computer, and biochemical evidence relates the higher order structure of this element to its ability to function as a localization element. ^ Xlsirt 137 is 99% identical to the Xlsirt consensus sequence identified in this study, suggesting that it is the localization element for all localized Xlsirt family members. The repeat unit was reframed based on function, rather than arbitrarily based on sequence. This work supports the hypothesis presented in 1981 by George Spohr, who originally isolated the Xlsirts, which stated that the highly conserved repetitive elements must be constrained from variability due to some unknown function of the repeats themselves. These studies shed light on the mechanism of RNA localization, linking structure and function. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In common with other members of the p120-catenin subclass of catenins, ARVCF-catenin appears to have multiple cellular and developmental functions. In Xenopus, our lab recently demonstrated that xARVCF- and Xp120-catenins are each essential for early vertebrate embryogenesis, being functionally linked to Rho-family GTPases (RhoA, Rac) and cadherin metabolic stability. For the project described here, the yeast two-hybrid system was employed to screen a Xenopus laevis neurula library for proteins that interact with xARVCF, resulting in the identification of the Xenopus homolog of Kazrin (xKazrin). Kazrin is a variably-spliced protein of unknown function that has been shown to interact with periplakin and envoplakin, components of desmosomal junctions. Kazrin's primary sequence is highly conserved across vertebrate species and is composed of an amino-terminal nuclear export sequence (NES), a carboxy-terminal nuclear localization sequence (NLS) and a central predicted coiled-coil domain. In vitro and in vivo authenticity tests demonstrated that xARVCF-catenin interacts directly with xKazrin via xARVCF's Armadillo and carboxy-terminal regions and xKazrin's coiled-coil domain. The interaction of xARVCF-catenin with xKazrin is specific and does not extend to the related Xp120-catenin. xKazrin co-localized with E-cadherin at sites of cell-cell contact and could be co-immunoprecipitated with components of the cadherin complex. xKazrin was also present in the cytoplasm and nucleus. Suggestive of a nuclear role, mutation of xKazrin's predicted NLS resulted in nuclear exclusion, while deletion of the predicted NES resulted in loss of sensitivity to nuclear export inhibitors. Within Xenopus embryos, xKazrin was expressed across all developmental stages and appeared at varying levels in adult tissues. Morpholino depletion of xKazrin from Xenopus embryos resulted in axial elongation abnormalities and loss of tissue integrity after neurulation. Over-expression of xKazrin had no effect, while over-expression of a NLS mutant resulted in a mild phenotype similar to that seen in xKazrin depleted embryos. Interestingly, the axial phenotype resulting from reduced xKazrin levels was largely rescuable by xARVCF over-expression. In conjunction with xARVCF-catenin, xKazrin has properties consistent with its function at cell-cell contact sites and in the nucleus. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High voltage-activated (HVA) calcium channels from rat brain and rabbit heart are expressed in Xenopus laevis oocytes and their modulation by protein kinases studied. A subtype of the HVA calcium current expressed by rat brain RNA is potentiated by the phospholipid- and calcium-dependent protein kinase (PKC). The calcium channel clone $\alpha\sb{\rm1C}$ from rabbit heart is modulated by the cAMP-dependent protein kinase (PKA), and another factor present in the cytoplasm.^ The HVA calcium channels from rat brain do not belong to the L-type subclass since they are insensensitive to dihydropyridine (DHP) agonists and antagonists. The expressed currents do contain a N-type fraction which is identified by inactivation at depolarized potentials, and a P-type fraction as defined by blockade by the venom of the funnel web spider Agelenopsis Aperta. A non N-type fraction of this current is potentiated, by using phorbol esters to activate PKC. This residual fraction of current resembles the newly described Q-type channel from cerebellar granule cells in its biophysical properties, and potentiation by activation of PKC.^ The $\alpha\sb{\rm1C}$ clone from rabbit heart is expressed in oocytes and single-channel currents are measured using the cell-attached and cell-excised patch clamp technique. The single-channel current runs down within two minutes after patch excision into normal saline bath solution. The catalytic subunit of PKA + MgATP is capable of reversing this rundown for over 15 minutes. There also appears to be an additional factor present in the cytoplasm necessary for channel activity as revealed in experiments where PKA failed to prevent rundown.^ These data are important in that these types of channels are involved in synaptic transmission at many different types of synapses. The mammalian synapse is not accessible for these types of studies, however, the oocyte expression system allows access to HVA calcium channels for the study of their modulation by phosphorylation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One way developing embryos regulate the expression of their genes is by localizing mRNAs to specific subcellular regions. In the oocyte of the frog, Xenopus laevis, many RNAs are localized specifically to the animal or the vegetal halves of the oocyte. The localization of these RNAs contributes to the primary polarity of the oocyte, the asymmetry that is the basis for patterning and lineage specification in the embryo. I have screened a cDNA library for clones containing the Xlsirt repeat, an element known to target RNAs to the vegetal cortex of the oocyte. I have identified seventeen cDNA clones that contain this element. One of these cDNAs encodes the RNA binding protein Hermes. The Hermes mRNA is localized to the vegetal cortex of the oocyte. Additionally, Hermes protein is also vegetally localized in the oocyte and is found in subcellular structures known to contain localized mRNAs. This suggests that Hermes might interact with localized RNAs. While Hermes protein is present in oocytes, it disappears at germinal vesicle breakdown during maturation. We therefore believe that the time period during which Hermes functions is during oogenesis or maturation prior to the time of Hermes degradation. To determine Hermes function, an antisense depletion strategy was used that involved injecting morpholino oligos (HE-MO) into oocytes. Injection of these morpholinos causes the level of Hennes protein to drop prematurely during maturation. Embryos produced from these oocytes exhibit cleavage defects that are most prevalent in the vegetal blastomeres. The phenotype can be partially rescued by injection of a heterologous Hermes mRNA and is therefore specific to Hermes. The Hermes expression and depletion results are consistent with a model in which Hermes interacts with one or more vegetally localized mRNAs in the oocyte and during the early stages of maturation. The interaction is required for cleavage of the vegetal blastomeres. Therefore, it is likely that at least one mRNA that interacts with Hermes is a cell cycle regulator. ^