5 resultados para Works in Progress
em DigitalCommons@The Texas Medical Center
Resumo:
The purpose of this study was to examine the relationship between enterotoxigenic ETEC and travelers' diarrhea over a period of five years in Guadalajara, Mexico. Specifically, this study identified and characterized ETEC from travelers with diarrhea. The objectives were to study the colonization factor antigens, toxins and antibiotic sensitivity patterns in ETEC from 1992 to 1997 and to study the molecular epidemiology of ETEC by plasmid content and DNA restriction fragment patterns. ^ In this survey of travelers' diarrhea in Guadalajara, Mexico, 928 travelers with diarrhea were screened for enteric pathogens between 1992 and 1997. ETEC were isolated in 195 (19.9%) of the patients, representing the most frequent enteric pathogen identified. ^ A total of 31 antimicrobial susceptibility patterns were identified among ETEC isolates over the five-year period. ^ The 195 ETEC isolates contained two to six plasmids each, which ranged in size from 2.0 to 23 kbp. ^ Three different reproducible rRNA gene restriction patterns (ribotypes R-1 to R-3) were obtained among the 195 isolates with the enzyme, HindIII. ^ Colonization factor antigens (CFAs) were identified in 99 (51%) of the 195 ETEC strains studied. ^ Cluster analysis of the observations seen in the four assays all confirmed the five distinct groups of study-year strains of ETEC. Each group had a >95% similarity level of strains within the group and <60% similarity level between the groups. In addition, discriminant analysis of assay variables used in predicting the ETEC strains, reveal a >80% relationship between both the plasmid and rRNA content of ETEC strains and study-year. ^ These findings, based on laboratory observations of the differences in biochemical, antimicrobial susceptibility, plasmid and ribotype content, suggest complex epidemiology for ETEC strains in a population with travelers' diarrhea. The findings of this study may have implications for our understanding of the epidemiology, transmission, treatment, control and prevention of the disease. It has been suggested that an ETEC vaccine for humans should contain the most prevalent CFAs. Therefore, it is important to know the prevalence of these factors in ETEC in various geographical areas. ^ CFAs described in this dissertation may be used in different epidemiological studies in which the prevalence of CFAs and other properties on ETEC will be evaluated. Furthermore, in spite of an intense search in near 200 ETEC isolates for strains that may have clonal relationship, we failed to identify such strains. However, further studies are in progress to construct suitable live vaccine strains and to introduce several of CFAs in the same host organism by recombinant DNA techniques (Dr. Ann-Mari Svennerholm's lab). (Abstract shortened by UMI.)^
Resumo:
The protein p53 binding protein one (53BP1) was discovered in a yeast two-hybrid screen that used the DNA binding domain of p53 as bait. Cloning of full-length 53BP1 showed that this protein contains several protein domains which help make up the protein, which include two tandem BRCT domains and a amino-terminal serine/glutamine cluster domain (SCD). These are two protein domains are often seen in factors that are involved in the cellular response to DNA damage and control of cell cycle checkpoints and we hypothesize that 53BP1 is involved in the cellular response to DNA damage. In support of this hypothesis we observe that 53BP1 is phosphorylated and undergoes a dramatic nuclear re-localization in response to DNA damaging agents. 53BP1 also interacts with several factors that are important in the cellular response to DNA damage, such as the BRCA1 tumor suppressor, ATM and Rad3 related (ATR), and the phosphorylated version of the histone variant H2AX. Mice deficient in 53BP1 display increased sensitivity ionizing radiation (IR), a DNA damaging agent that introduces DNA double strand breaks (DSBs). In addition, 53BP1-deficient mice do not properly undergo the process of class switch recombination (CSR). We also observe that when a defect in 53BP1 is combined with a defect in p53; the resulting mice have an increased rate of formation of spontaneous tumors, notably the formation of B and T lineage lymphomas. The T lineage tumors arise by two distinct mechanisms: one driven by defects in cell cycle regulation and a second driven by defects in the ability to repair DNA DSBs. The B lineage tumors arise by the inability to repair DNA damage and over-expression of the oncogene c-myc. ^ With these observations, we conclude that not only does 53BP1 function in the cellular response to DNA damage, but it also works in concert with p53 to suppress tumor formation. ^
Resumo:
This descriptive systematic review describes intervention trials for children and youth that targeted screen time (ST) as a way to prevent or control obesity and measured ST, and at least one of the following: physical activity, dietary intake, and adiposity. Both “hands-on” (e.g., video games) and “hands free” (e.g., television viewing) ST were included. Published, completed intervention trials (k=12), not-yet-published, completed trials (k=6), and in-progress trials (k=11) were identified through searches of electronic databases, including trial registries and bibliographies of eligible study reports. Study characteristics of the 29 identified trials were coded and presented in evidence tables. Considerable attention was paid to the type of ST addressed, measures used, and the type of interventions. Based on the number of in-progress and not-yet-published trials, the number of completed, published reports will double in the next three years. Most of the studies were funded by federal sources. General populations, not restricted by race, gender, or weight status, were targets of most interventions with children ages 9-12 yeas as the modal age group. Most trials used randomized control trials in which the majority of control or comparison group received an intervention. The mean number of participants was 242.8 (SD=314.7) and interventions were delivered over an average of 10.5 months and consisted of approximately 16 sessions, with a total time of about eight hours. The majority of completed trials evaluate each of the four constructs, however, most studies have more than one measure to assess each construct (e.g., BMI and tricep skinfold thickness to evaluate adiposity) and rarely did studies use the same measures. This is likely why the majority of studies produced at least one significant intervention effect on each outcome that was assessed. The four major outcomes should be evaluated in all interventions attempting to reduce screen time in order to determine the mechanisms involved that may contribute to obesity. More importantly researchers should work together to determine the best measures to evaluate the four main constructs to allow studies to be compared. Another area for consensus is the definition of ST. ^
Resumo:
Programmed cell death is an anticancer mechanism utilized by p53 that when disrupted can accelerate tumor development in response to oncogenic stress. Defects in the RB tumor suppressor cause aberrant cell proliferation as well as apoptosis. The combinatorial loss of the p53 and RB pathways is observed in a large percentage of human tumors. The E2F family of transcription factors primarily mediates the phenotype of Rb loss, since RB is a negative regulator of E2F. Contrary to early expectations, it has now been shown that the ARF (alternative reading frame) tumor suppressor is not required for p53-dependent apoptosis in response to deregulation of the RB/E2F pathway. In this study, we demonstrate that ATM, known as a DNA double-strand break (DSB) sensor, is responsible for ARF-independent apoptosis and p53 activation induced by deregulated E2F1. Moreover, NBS1, a component of the MRN DNA repair complex, is also required for E2F1-induced apoptosis and apparently works in the same pathway as ATM. We further found that endogenous E2F1 and E2F3 both play a role in apoptosis and ATM activation in response to inhibition of RB by the adenoviral E1A oncoprotein. We demonstrate that, unlike deregulated E2F3 and Myc, ATM activation by deregulated E2F1 does not involve the induction of DNA damage, autophosphorylation of ATM on Ser 1981, a marker of ATM activation by DSB, but does depend on the presence of NBS1, suggesting that E2F1 activates ATM in a different manner from E2F3 and Myc. Results from domain mapping studies show that the DNA binding, dimerization, and marked box domains of E2F1 are required to activate ATM and stimulate apoptosis but the transactivation domain is not. This implies that E2F1's DNA binding and interaction with other proteins through the marked box domain are necessary to induce ATM activation leading to apoptosis but transcriptional activation by E2F1 is dispensable. Together these data suggest a model in which E2F1 activates ATM to phosphorylate p53 through a novel mechanism that is independent of DNA damage and transcriptional activation by E2F1.^
Resumo:
Community health workers (CHWs) can serve as a bridge between healthcare providers and communities to positively impact social determinants of health and, thus, the overall health of the population. The potential to effect lasting change is particularly significant within resource-poor settings with limited access to formally trained health care providers such as the small, rural village of Santa Ana Intibucá, Honduras and surrounding areas—located on the geographically and politically isolated border of Honduras and El Salvador. The Baylor Shoulder to Shoulder Foundation (BSTS) works in conjunction with Santa Ana's volunteer health committee to bring a health brigade that has provided health care and public health projects to the area at least twice a year since 2001. They have also hired a full-time Honduran physician, a Honduran in-country administrative director, and built a clinic; yet, no community health worker program exists. This CHW program model is the response to a clear need for a CHW program within the area served by BSTS and presents a CHW program model specific to Santa Ana Intibucá and surrounding areas to be implemented by BSTS. Methods used to develop this model include reviewing the literature for recommendations from leading authorities as well as successfully implemented CHW programs in comparable regions. This information was incorporated into existing knowledge and materials currently being used in the area. Using the CHW model proposed here, each brigade, in conjunction with the communities served, can help develop new modules to respond to the specific health priorities of the region at that time, incorporating consistent modes of contact with the local physician and the CHWs to provide refresher courses, training in new topics of interest, and to be reminded of the importance of community health workers' role as the critical link to healthy societies. With cooperation, effort, and support, the brigade can continue to help integrate a sustainable CHW system in which communities may be able to maximize the care they receive while also learning to care for their own health and the future of their communities.^