6 resultados para Work design.
em DigitalCommons@The Texas Medical Center
Resumo:
Health care providers face the problem of trying to make decisions with inadequate information and also with an overload of (often contradictory) information. Physicians often choose treatment long before they know which disease is present. Indeed, uncertainty is intrinsic to the practice of medicine. Decision analysis can help physicians structure and work through a medical decision problem, and can provide reassurance that decisions are rational and consistent with the beliefs and preferences of other physicians and patients. ^ The primary purpose of this research project is to develop the theory, methods, techniques and tools necessary for designing and implementing a system to support solving medical decision problems. A case study involving “abdominal pain” serves as a prototype for implementing the system. The research, however, focuses on a generic class of problems and aims at covering theoretical as well as practical aspects of the system developed. ^ The main contributions of this research are: (1) bridging the gap between the statistical approach and the knowledge-based (expert) approach to medical decision making; (2) linking a collection of methods, techniques and tools together to allow for the design of a medical decision support system, based on a framework that involves the Analytic Network Process (ANP), the generalization of the Analytic Hierarchy Process (AHP) to dependence and feedback, for problems involving diagnosis and treatment; (3) enhancing the representation and manipulation of uncertainty in the ANP framework by incorporating group consensus weights; and (4) developing a computer program to assist in the implementation of the system. ^
Resumo:
The usage of intensity modulated radiotherapy (IMRT) treatments necessitates a significant amount of patient-specific quality assurance (QA). This research has investigated the precision and accuracy of Kodak EDR2 film measurements for IMRT verifications, the use of comparisons between 2D dose calculations and measurements to improve treatment plan beam models, and the dosimetric impact of delivery errors. New measurement techniques and software were developed and used clinically at M. D. Anderson Cancer Center. The software implemented two new dose comparison parameters, the 2D normalized agreement test (NAT) and the scalar NAT index. A single-film calibration technique using multileaf collimator (MLC) delivery was developed. EDR2 film's optical density response was found to be sensitive to several factors: radiation time, length of time between exposure and processing, and phantom material. Precision of EDR2 film measurements was found to be better than 1%. For IMRT verification, EDR2 film measurements agreed with ion chamber results to 2%/2mm accuracy for single-beam fluence map verifications and to 5%/2mm for transverse plane measurements of complete plan dose distributions. The same system was used to quantitatively optimize the radiation field offset and MLC transmission beam modeling parameters for Varian MLCs. While scalar dose comparison metrics can work well for optimization purposes, the influence of external parameters on the dose discrepancies must be minimized. The ability of 2D verifications to detect delivery errors was tested with simulated data. The dosimetric characteristics of delivery errors were compared to patient-specific clinical IMRT verifications. For the clinical verifications, the NAT index and percent of pixels failing the gamma index were exponentially distributed and dependent upon the measurement phantom but not the treatment site. Delivery errors affecting all beams in the treatment plan were flagged by the NAT index, although delivery errors impacting only one beam could not be differentiated from routine clinical verification discrepancies. Clinical use of this system will flag outliers, allow physicists to examine their causes, and perhaps improve the level of agreement between radiation dose distribution measurements and calculations. The principles used to design and evaluate this system are extensible to future multidimensional dose measurements and comparisons. ^
Resumo:
Purpose. The purpose of this study was to determine the perceptions of work engagement of Taiwanese nurses with 3 specific aims: (1) understand Taiwanese nurses' perceptions of work engagement; (2) explore the factors influencing work engagement, and (3) examine how work engagement impacts nursing care for patients. ^ Design. The study used an ethnographic approach with participant observation and semi-structured interviews with RNs. ^ Setting. The study was conducted in the highest and lowest nurse turnover medical surgical units at a regional teaching hospital in southwestern Taiwan. ^ Sample. Purposive sampling resulted in 28 formal interviews with RNs who provided direct patient care, had at least 3 months experience in nursing, and were full-time employees. ^ Methods. Descriptive data were collected through participant observation in each unit. Observations were made while attending meetings, continuing education sessions, and informal conversations with RNs. Field notes and audio recorded semi-structured interviews were analyzed using qualitative thematic analytic techniques. ^ Findings. Findings revealed perceptions of work engagement spanned four domains: patients ("wholehearted care"), work (positive attitude), self (fulfillment and happiness), and others (relationships with colleagues). Providing "wholehearted care" toward patients was the foundation of work engagement for nurses in Taiwan. Engaged nurses felt fulfilled, happy, and found "meaning" through the process of patient care. The study revealed five factors that influenced work engagement: personal, organizational, social, patient, and professional. The impact of work engagement on nurse and patient outcomes are confirmed. ^ Conclusions. Taiwanese nurses connect work engagement with patients, the job, oneself, and colleagues. "Wholehearted patient care" is the core manifestation of work engagement among these nurses. In contrast, studies in western business only focused on work attitudes. Losing interest and "heart" lead to work routines which can lead to individual unhappiness. Findings from this study validate the multiple factors contributing to work engagement of nurses. Job demands and resources can only partially explain what hinders work engagement. Work disengagement and burnout share some commonality but should be measured differently. An understanding of RNs' perceptions of work engagement may provide direction for strategies that improve work engagement leading to decreased RN turnover. ^
Resumo:
High-resolution, small-bore PET systems suffer from a tradeoff between system sensitivity, and image quality degradation. In these systems long crystals allow mispositioning of the line of response due to parallax error and this mispositioning causes resolution blurring, but long crystals are necessary for high system sensitivity. One means to allow long crystals without introducing parallax errors is to determine the depth of interaction (DOI) of the gamma ray interaction within the detector module. While DOI has been investigated previously, newly available solid state photomultipliers (SSPMs) well-suited to PET applications and allow new modules for investigation. Depth of interaction in full modules is a relatively new field, and so even if high performance DOI capable modules were available, the appropriate means to characterize and calibrate the modules are not. This work presents an investigation of DOI capable arrays and techniques for characterizing and calibrating those modules. The methods introduced here accurately and reliably characterize and calibrate energy, timing, and event interaction positioning. Additionally presented is a characterization of the spatial resolution of DOI capable modules and a measurement of DOI effects for different angles between detector modules. These arrays have been built into a prototype PET system that delivers better than 2.0 mm resolution with a single-sided-stopping-power in excess of 95% for 511 keV g's. The noise properties of SSPMs scale with the active area of the detector face, and so the best signal-to-noise ratio is possible with parallel readout of each SSPM photodetector pixel rather than multiplexing signals together. This work additionally investigates several algorithms for improving timing performance using timing information from multiple SSPM pixels when light is distributed among several photodetectors.
Resumo:
The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.
Resumo:
Background: The failure rate of health information systems is high, partially due to fragmented, incomplete, or incorrect identification and description of specific and critical domain requirements. In order to systematically transform the requirements of work into real information system, an explicit conceptual framework is essential to summarize the work requirements and guide system design. Recently, Butler, Zhang, and colleagues proposed a conceptual framework called Work Domain Ontology (WDO) to formally represent users’ work. This WDO approach has been successfully demonstrated in a real world design project on aircraft scheduling. However, as a top level conceptual framework, this WDO has not defined an explicit and well specified schema (WDOS) , and it does not have a generalizable and operationalized procedure that can be easily applied to develop WDO. Moreover, WDO has not been developed for any concrete healthcare domain. These limitations hinder the utility of WDO in real world information system in general and in health information system in particular. Objective: The objective of this research is to formalize the WDOS, operationalize a procedure to develop WDO, and evaluate WDO approach using Self-Nutrition Management (SNM) work domain. Method: Concept analysis was implemented to formalize WDOS. Focus group interview was conducted to capture concepts in SNM work domain. Ontology engineering methods were adopted to model SNM WDO. Part of the concepts under the primary goal “staying healthy” for SNM were selected and transformed into a semi-structured survey to evaluate the acceptance, explicitness, completeness, consistency, experience dependency of SNM WDO. Result: Four concepts, “goal, operation, object and constraint”, were identified and formally modeled in WDOS with definitions and attributes. 72 SNM WDO concepts under primary goal were selected and transformed into semi-structured survey questions. The evaluation indicated that the major concepts of SNM WDO were accepted by 41 overweight subjects. SNM WDO is generally independent of user domain experience but partially dependent on SNM application experience. 23 of 41 paired concepts had significant correlations. Two concepts were identified as ambiguous concepts. 8 extra concepts were recommended towards the completeness of SNM WDO. Conclusion: The preliminary WDOS is ready with an operationalized procedure. SNM WDO has been developed to guide future SNM application design. This research is an essential step towards Work-Centered Design (WCD).