4 resultados para Work Schedule Tolerance
em DigitalCommons@The Texas Medical Center
Resumo:
This study of ambulance workers for the emergency medical services of the City of Houston studied the factors related to shiftwork tolerance and intolerance. The EMS personnel work a 24-hour shift with rotating days of the week. Workers are assigned to A, B, C, D shift, each of which rotate 24-hours on, 24-hours off, 24-hours on and 4 days off. One-hundred and seventy-six male EMTs, paramedics and chauffeurs from stations of varying levels of activity were surveyed. The sample group ranged in age from 20 to 45. The average tenure on the job was 8.2 years. Over 68% of the workers held a second job, the majority of which worked over 20 hours a week at the second position.^ The survey instrument was a 20-page questionnaire modeled after the Folkard Standardized Shiftwork Index. In addition to demographic data, the survey tool provided measurements of general job satisfaction, sleep quality, general health complaints, morningness/eveningness, cognitive and somatic anxiety, depression, and circadian types. The survey questionnaire included an EMS-specific scaler of stress.^ A conceptual model of Shiftwork Tolerance was presented to identify the key factors examined in the study. An extensive list of 265 variables was reduced to 36 key variables that related to: (1) shift schedule and demographic/lifestyle factors, (2) individual differences related to traits and characteristics, and (3) tolerance/intolerance effects. Using the general job satisfaction scaler as the key measurement of shift tolerance/intolerance, it was shown that a significant relationship existed between this dependent variable and stress, number of years working a 24-hour shift, sleep quality, languidness/vigorousness. The usual amount of sleep received during the shift, general health complaints and flexibility/rigidity (R$\sp2$ =.5073).^ The sample consisted of a majority of morningness-types or extreme-morningness types, few evening-types and no extreme-evening types, duplicating the findings of Motohashi's previous study of ambulance workers. The level of activity by station was not significant on any of the dependent variables examined. However, the shift worked had a relationship with sleep quality, despite the fact that all shifts work the same hours and participate in the same rotation schedule. ^
Resumo:
"Medicine: Perspectives in History and Art" (Robert E. Greenspan) Eight Practical Lessons from Osler That Will Better Your Life (Bryan Boutwell) History of the American Mental Hospital: From networking to not working & Back (Ed Fann) Ambiguities and Amputations: Methods, mishaps, and the surgical quest to cure breast cancer (Student Essay Contest Winner) (Matt Luedke) An Automated, Algorithmic, Retrospective Analysis of the Growing Influence of Statistics in Medicine (Student Essay Contest Winner) (Ryan Rochat) What’s Special about William Osler? (Charles S. Bryan) The Virtuous Physician: Lessons from Medical Biography (Charles S. Bryan) Legacy: 50 Years of Loving Care – The History of Texas Children’s Hospital, 1954-2004 (Betsy Parish) The Education of a University President: Edgar Odell Lovett of Rice University (John B. Boles) Artists and Illness: The Effect of Illness on an Artist’s Work (David Bybee)
Resumo:
Class I MHC proteins have been shown to induce accelerated rejection or prolong survival of allografts in various experimental models. These immunological effects have been attributed to the highly polymorphic alpha helical regions of the extracellular portions of the class I MHC molecule. The present experiments were designed to elucidate the immunomodulatory effects of these polymorphic regions and delineate the mechanisms involved. Soluble allochimeric class I MHC proteins were produced by substituting the PVG class I MHC RT1.Ac amino acid residues within the a 1 helical region with those of the donor BN ( a 1hn-RT1.Ac), the a 2 helical region of BN ( a 2hn-RT1.Ac), and both the a 1 and a 2 helical regions (RT1.An). The class I MHC proteins were produced in an E. coli protein expression system. The a 2hn-RT1.Ac and RT1.An proteins, when administered subcutaneously into PVG hosts 7 days prior to transplantation, resulted in accelerated rejection of BN cardiac allografts. The a 1hn-RT1.Ac construct did not demonstrate such immunogenic effects. Intra-portal administration of a 1hn-RT1.Ac or RT1.An, in combination with perioperative CsA, induced tolerance to BN cardiac allografts. The a 1hn-RT1.Ac protein was able to induce tolerance in a larger majority of the PVG recipients and at a lower dose of protein when compared to the RT1.An protein. RT1.An administered orally to PVG recipients also induced long term survival of cardiac allografts. In vitro analysis revealed that lymphocytes from tolerant hosts were hyporesponsive to donor splenocytes, but responsive to 3rd party splenocytes. Evaluation of T cell cytokine expression patterns revealed that rejector PVG hosts displayed a Type I T-cell response when re-challenged with donor splenocytes, in contrast to tolerant animals that displayed a Type II T-cell response. FACS analysis of the T cells revealed that the ratio of CD4 to CD8 cells was 3:1 and was consistent in the groups tested suggesting a complex interaction between the subsets of T cells, yielding the observed results. Histologic analysis of the cardiac allografts revealed that tolerant PVG hosts maintained BN cardiac allografts without any evidence of acute or chronic rejection after 300 days post transplant. This body of work has demonstrated that the use of soluble donor/recipient allochimeric class I MHC proteins with a short peri-operative course of CsA resulted in transplant tolerance. This treatment regimen proffers a clinically relevant approach to the induction of tolerance across MHC barriers. ^
Resumo:
Prostate cancer (PCa) is one of the leading malignancies affecting men in the Western world. Although tremendous effort has been made towards understanding PCa development and developing clinical treatments in the past decades, the exact mechanisms of PCa are still not clearly understood. Emerging evidence has postulated that a population of stem cell-like cells inside a tumor, termed ‘cancer stem cells (CSCs)’, may be the cells responsible for tumor initiation, progression, recurrence, metastasis and therapy resistance. Like CSC studies in other cancer types, it has been reported that PCa also contains CSCs. However, there remain several unresolved questions that need to be clarified. First, the relationship between prostate CSCs (PCSCs) and therapy resistance (chemo- and radio-) is not known. Herein, we have found that not all CSCs are drug-tolerant, and not all drug-tolerant cells are CSCs. Second, whether primary human PCa (HPCa) actually contain PCSCs remains unclear, due to the well-known fact that we have yet to establish a reliable assay system that can reproducibly and faithfully reconstitute tumor regeneration from single HPCa cells. Herein, after utilizing more than 114 HPCa samples we have provided evidence that immortalized bone marrow-derived stromal cells (Hs5) can help dissociated HPCa cells generate undifferentiated tumors in immunodeficient NOD/SCID-IL2Rγ-/- mice, and the undifferentiated PCa cells seem to have a survival advantage to generate tumors. Third, the evolution of PCa from androgen dependent to the lethally castration resistant (CRPC) stage remains enigmatic, and the cells responsible for CRPC development have not been identified. Herein, we have found a putative cell population, ALDH+CD44+α2β1+ PCa cells that may represent a cell-of-origin for CRPC. Taken together, our work has improved our understanding of PCSC properties, possibly highlighting a potential therapeutic target for CRPC.