2 resultados para White, Winefrid.
em DigitalCommons@The Texas Medical Center
Resumo:
Spasmodic dysphonia is a neurological disorder characterized by involuntary spasms in the laryngeal muscles during speech production. Although the clinical symptoms are well characterized, the pathophysiology of this voice disorder is unknown. We describe here, for the first time to our knowledge, disorder-specific brain abnormalities in these patients as determined by a combined approach of diffusion tensor imaging (DTI) and postmortem histopathology. We used DTI to identify brain changes and to target those brain regions for neuropathological examination. DTI showed right-sided decrease of fractional anisotropy in the genu of the internal capsule and bilateral increase of overall water diffusivity in the white matter along the corticobulbar/corticospinal tract in 20 spasmodic dysphonia patients compared to 20 healthy subjects. In addition, water diffusivity was bilaterally increased in the lentiform nucleus, ventral thalamus and cerebellar white and grey matter in the patients. These brain changes were substantiated with focal histopathological abnormalities presented as a loss of axonal density and myelin content in the right genu of the internal capsule and clusters of mineral depositions, containing calcium, phosphorus and iron, in the parenchyma and vessel walls of the posterior limb of the internal capsule, putamen, globus pallidus and cerebellum in the postmortem brain tissue from one patient compared to three controls. The specificity of these brain abnormalities is confirmed by their localization, limited only to the corticobulbar/corticospinal tract and its main input/output structures. We also found positive correlation between the diffusivity changes and clinical symptoms of spasmodic dysphonia (r = 0.509, P = 0.037). These brain abnormalities may alter the central control of voluntary voice production and, therefore, may underlie the pathophysiology of this disorder.
Resumo:
Recent studies using diffusion tensor imaging (DTI) have advanced our knowledge of the organization of white matter subserving language function. It remains unclear, however, how DTI may be used to predict accurately a key feature of language organization: its asymmetric representation in one cerebral hemisphere. In this study of epilepsy patients with unambiguous lateralization on Wada testing (19 left and 4 right lateralized subjects; no bilateral subjects), the predictive value of DTI for classifying the dominant hemisphere for language was assessed relative to the existing standard-the intra-carotid Amytal (Wada) procedure. Our specific hypothesis is that language laterality in both unilateral left- and right-hemisphere language dominant subjects may be predicted by hemispheric asymmetry in the relative density of three white matter pathways terminating in the temporal lobe implicated in different aspects of language function: the arcuate (AF), uncinate (UF), and inferior longitudinal fasciculi (ILF). Laterality indices computed from asymmetry of high anisotropy AF pathways, but not the other pathways, classified the majority (19 of 23) of patients using the Wada results as the standard. A logistic regression model incorporating information from DTI of the AF, fMRI activity in Broca's area, and handedness was able to classify 22 of 23 (95.6%) patients correctly according to their Wada score. We conclude that evaluation of highly anisotropic components of the AF alone has significant predictive power for determining language laterality, and that this markedly asymmetric distribution in the dominant hemisphere may reflect enhanced connectivity between frontal and temporal sites to support fluent language processes. Given the small sample reported in this preliminary study, future research should assess this method on a larger group of patients, including subjects with bi-hemispheric dominance.