7 resultados para Weibull-jakauma

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates a theoretical model where a longitudinal process, that is a stationary Markov-Chain, and a Weibull survival process share a bivariate random effect. Furthermore, a Quality-of-Life adjusted survival is calculated as the weighted sum of survival time. Theoretical values of population mean adjusted survival of the described model are computed numerically. The parameters of the bivariate random effect do significantly affect theoretical values of population mean. Maximum-Likelihood and Bayesian methods are applied on simulated data to estimate the model parameters. Based on the parameter estimates, predicated population mean adjusted survival can then be calculated numerically and compared with the theoretical values. Bayesian method and Maximum-Likelihood method provide parameter estimations and population mean prediction with comparable accuracy; however Bayesian method suffers from poor convergence due to autocorrelation and inter-variable correlation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain tumor is one of the most aggressive types of cancer in humans, with an estimated median survival time of 12 months and only 4% of the patients surviving more than 5 years after disease diagnosis. Until recently, brain tumor prognosis has been based only on clinical information such as tumor grade and patient age, but there are reports indicating that molecular profiling of gliomas can reveal subgroups of patients with distinct survival rates. We hypothesize that coupling molecular profiling of brain tumors with clinical information might improve predictions of patient survival time and, consequently, better guide future treatment decisions. In order to evaluate this hypothesis, the general goal of this research is to build models for survival prediction of glioma patients using DNA molecular profiles (U133 Affymetrix gene expression microarrays) along with clinical information. First, a predictive Random Forest model is built for binary outcomes (i.e. short vs. long-term survival) and a small subset of genes whose expression values can be used to predict survival time is selected. Following, a new statistical methodology is developed for predicting time-to-death outcomes using Bayesian ensemble trees. Due to a large heterogeneity observed within prognostic classes obtained by the Random Forest model, prediction can be improved by relating time-to-death with gene expression profile directly. We propose a Bayesian ensemble model for survival prediction which is appropriate for high-dimensional data such as gene expression data. Our approach is based on the ensemble "sum-of-trees" model which is flexible to incorporate additive and interaction effects between genes. We specify a fully Bayesian hierarchical approach and illustrate our methodology for the CPH, Weibull, and AFT survival models. We overcome the lack of conjugacy using a latent variable formulation to model the covariate effects which decreases computation time for model fitting. Also, our proposed models provides a model-free way to select important predictive prognostic markers based on controlling false discovery rates. We compare the performance of our methods with baseline reference survival methods and apply our methodology to an unpublished data set of brain tumor survival times and gene expression data, selecting genes potentially related to the development of the disease under study. A closing discussion compares results obtained by Random Forest and Bayesian ensemble methods under the biological/clinical perspectives and highlights the statistical advantages and disadvantages of the new methodology in the context of DNA microarray data analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multivariate frailty hazard model is developed for joint-modeling of three correlated time-to-event outcomes: (1) local recurrence, (2) distant recurrence, and (3) overall survival. The term frailty is introduced to model population heterogeneity. The dependence is modeled by conditioning on a shared frailty that is included in the three hazard functions. Independent variables can be included in the model as covariates. The Markov chain Monte Carlo methods are used to estimate the posterior distributions of model parameters. The algorithm used in present application is the hybrid Metropolis-Hastings algorithm, which simultaneously updates all parameters with evaluations of gradient of log posterior density. The performance of this approach is examined based on simulation studies using Exponential and Weibull distributions. We apply the proposed methods to a study of patients with soft tissue sarcoma, which motivated this research. Our results indicate that patients with chemotherapy had better overall survival with hazard ratio of 0.242 (95% CI: 0.094 - 0.564) and lower risk of distant recurrence with hazard ratio of 0.636 (95% CI: 0.487 - 0.860), but not significantly better in local recurrence with hazard ratio of 0.799 (95% CI: 0.575 - 1.054). The advantages and limitations of the proposed models, and future research directions are discussed. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two cohorts of amyotrophic lateral sclerosis (ALS) patients were identified. One incidence-based cohort from Harris County, Texas with 97 cases, and the other a clinic referral series from an ALS clinic in Houston, Texas with 439 cases were followed-up to evaluate the prognosis of ALS. The overall Kaplan-Meier 3-year survival after diagnosis was similar, 0.287 for the incidence cohort and 0.313 for the referral cohort. However, the 5-year survival was much lower for the incidence cohort than the referral cohort (0.037 vs. 0.206). The large difference in 5-year survival was thought to be the results of a stronger unfavorable effect of the prognostic factors in the incidence cohort than in the referral cohort.^ Cohort-specific Weibull regression models were derived to evaluate the cohort-specific prognostic factors and survival probability with adjustment of certain prognostic factors.^ The major prognostic factors were: age at diagnosis, bulbar onset, black ethnicity, and positive family history of ALS in both cohorts. Female gender, simultaneous upper and lower extremities onset were specifically unfavorable factors in the incidence cohort. In the incidence cohort the prognosis was relatively favorable for cases with duration from onset to diagnosis longer than 4 months, however in the referral cohort the relatively favorable prognosis only occurred in cases with duration from onset to diagnosis 1 year or longer and was strongest in cases with duration 5 years and longer. Age at diagnosis modified the effect of bulbar onset in the incidence cohort but not in the referral cohort. The estimated survival with presence of an unfavorable prognostic factor identified in the incidence cohort was higher for the referral cohort than for the incidence cohort. Future studies are indicated to investigate the disease heterogeneity issue of ALS based on survival distribution of ALS. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sizes and power of selected two-sample tests of the equality of survival distributions are compared by simulation for small samples from unequally, randomly-censored exponential distributions. The tests investigated include parametric tests (F, Score, Likelihood, Asymptotic), logrank tests (Mantel, Peto-Peto), and Wilcoxon-Type tests (Gehan, Prentice). Equal sized samples, n = 18, 16, 32 with 1000 (size) and 500 (power) simulation trials, are compared for 16 combinations of the censoring proportions 0%, 20%, 40%, and 60%. For n = 8 and 16, the Asymptotic, Peto-Peto, and Wilcoxon tests perform at nominal 5% size expectations, but the F, Score and Mantel tests exceeded 5% size confidence limits for 1/3 of the censoring combinations. For n = 32, all tests showed proper size, with the Peto-Peto test most conservative in the presence of unequal censoring. Powers of all tests are compared for exponential hazard ratios of 1.4 and 2.0. There is little difference in power characteristics of the tests within the classes of tests considered. The Mantel test showed 90% to 95% power efficiency relative to parametric tests. Wilcoxon-type tests have the lowest relative power but are robust to differential censoring patterns. A modified Peto-Peto test shows power comparable to the Mantel test. For n = 32, a specific Weibull-exponential comparison of crossing survival curves suggests that the relative powers of logrank and Wilcoxon-type tests are dependent on the scale parameter of the Weibull distribution. Wilcoxon-type tests appear more powerful than logrank tests in the case of late-crossing and less powerful for early-crossing survival curves. Guidelines for the appropriate selection of two-sample tests are given. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of size as well as power of a test is a vital part of a Clinical Trial Design. This research focuses on the simulation of clinical trial data with time-to-event as the primary outcome. It investigates the impact of different recruitment patterns, and time dependent hazard structures on size and power of the log-rank test. A non-homogeneous Poisson process is used to simulate entry times according to the different accrual patterns. A Weibull distribution is employed to simulate survival times according to the different hazard structures. The current study utilizes simulation methods to evaluate the effect of different recruitment patterns on size and power estimates of the log-rank test. The size of the log-rank test is estimated by simulating survival times with identical hazard rates between the treatment and the control arm of the study resulting in a hazard ratio of one. Powers of the log-rank test at specific values of hazard ratio (≠1) are estimated by simulating survival times with different, but proportional hazard rates for the two arms of the study. Different shapes (constant, decreasing, or increasing) of the hazard function of the Weibull distribution are also considered to assess the effect of hazard structure on the size and power of the log-rank test. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conservative procedures in low-dose risk assessment are used to set safety standards for known or suspected carcinogens. However, the assumptions upon which the methods are based and the effects of these methods are not well understood.^ To minimize the number of false-negatives and to reduce the cost of bioassays, animals are given very high doses of potential carcinogens. Results must then be extrapolated to much smaller doses to set safety standards for risks such as one per million. There are a number of competing methods that add a conservative safety factor into these calculations.^ A method of quantifying the conservatism of these methods was described and tested on eight procedures used in setting low-dose safety standards. The results using these procedures were compared by computer simulation and by the use of data from a large scale animal study.^ The method consisted of determining a "true safe dose" (tsd) according to an assumed underlying model. If one assumed that Y = the probability of cancer = P(d), a known mathematical function of the dose, then by setting Y to some predetermined acceptable risk, one can solve for d, the model's "true safe dose".^ Simulations were generated, assuming a binomial distribution, for an artificial bioassay. The eight procedures were then used to determine a "virtual safe dose" (vsd) that estimates the tsd, assuming a risk of one per million. A ratio R = ((tsd-vsd)/vsd) was calculated for each "experiment" (simulation). The mean R of 500 simulations and the probability R $<$ 0 was used to measure the over and under conservatism of each procedure.^ The eight procedures included Weil's method, Hoel's method, the Mantel-Byran method, the improved Mantel-Byran, Gross's method, fitting a one-hit model, Crump's procedure, and applying Rai and Van Ryzin's method to a Weibull model.^ None of the procedures performed uniformly well for all types of dose-response curves. When the data were linear, the one-hit model, Hoel's method, or the Gross-Mantel method worked reasonably well. However, when the data were non-linear, these same methods were overly conservative. Crump's procedure and the Weibull model performed better in these situations. ^