4 resultados para Web Semantico semantic open data geoSPARQL
em DigitalCommons@The Texas Medical Center
Resumo:
The objectives of this study were to identify and measure the average outcomes of the Open Door Mission's nine-month community-based substance abuse treatment program, identify predictors of successful outcomes, and make recommendations to the Open Door Mission for improving its treatment program.^ The Mission's program is exclusive to adult men who have limited financial resources: most of which were homeless or dependent on parents or other family members for basic living needs. Many, but not all, of these men are either chemically dependent or have a history of substance abuse.^ This study tracked a cohort of the Mission's graduates throughout this one-year study and identified various indicators of success at short-term intervals, which may be predictive of longer-term outcomes. We tracked various levels of 12-step program involvement, as well as other social and spiritual activities, such as church affiliation and recovery support.^ Twenty-four of the 66 subjects, or 36% met the Mission's requirements for success. Specific to this success criteria; Fifty-four, or 82% reported affiliation with a home church; Twenty-six, or 39% reported full-time employment; Sixty-one, or 92% did not report or were not identified as having any post-treatment arrests or incarceration, and; Forty, or 61% reported continuous abstinence from both drugs and alcohol.^ Five research-based hypotheses were developed and tested. The primary analysis tool was the web-based non-parametric dependency modeling tool, B-Course, which revealed some strong associations with certain variables, and helped the researchers generate and test several data-driven hypotheses. Full-time employment is the greatest predictor of abstinence: 95% of those who reported full time employment also reported continuous post-treatment abstinence, while 50% of those working part-time were abstinent and 29% of those with no employment were abstinent. Working with a 12-step sponsor, attending aftercare, and service with others were identified as predictors of abstinence.^ This study demonstrates that associations with abstinence and the ODM success criteria are not simply based on one social or behavioral factor. Rather, these relationships are interdependent, and show that abstinence is achieved and maintained through a combination of several 12-step recovery activities. This study used a simple assessment methodology, which demonstrated strong associations across variables and outcomes, which have practical applicability to the Open Door Mission for improving its treatment program. By leveraging the predictive capability of the various success determination methodologies discussed and developed throughout this study, we can identify accurate outcomes with both validity and reliability. This assessment instrument can also be used as an intervention that, if operationalized to the Mission’s clients during the primary treatment program, may measurably improve the effectiveness and outcomes of the Open Door Mission.^
Resumo:
Clinical text understanding (CTU) is of interest to health informatics because critical clinical information frequently represented as unconstrained text in electronic health records are extensively used by human experts to guide clinical practice, decision making, and to document delivery of care, but are largely unusable by information systems for queries and computations. Recent initiatives advocating for translational research call for generation of technologies that can integrate structured clinical data with unstructured data, provide a unified interface to all data, and contextualize clinical information for reuse in multidisciplinary and collaborative environment envisioned by CTSA program. This implies that technologies for the processing and interpretation of clinical text should be evaluated not only in terms of their validity and reliability in their intended environment, but also in light of their interoperability, and ability to support information integration and contextualization in a distributed and dynamic environment. This vision adds a new layer of information representation requirements that needs to be accounted for when conceptualizing implementation or acquisition of clinical text processing tools and technologies for multidisciplinary research. On the other hand, electronic health records frequently contain unconstrained clinical text with high variability in use of terms and documentation practices, and without commitmentto grammatical or syntactic structure of the language (e.g. Triage notes, physician and nurse notes, chief complaints, etc). This hinders performance of natural language processing technologies which typically rely heavily on the syntax of language and grammatical structure of the text. This document introduces our method to transform unconstrained clinical text found in electronic health information systems to a formal (computationally understandable) representation that is suitable for querying, integration, contextualization and reuse, and is resilient to the grammatical and syntactic irregularities of the clinical text. We present our design rationale, method, and results of evaluation in processing chief complaints and triage notes from 8 different emergency departments in Houston Texas. At the end, we will discuss significance of our contribution in enabling use of clinical text in a practical bio-surveillance setting.