2 resultados para Volume (Cubic content)
em DigitalCommons@The Texas Medical Center
Resumo:
The Food and Drug Administration (FDA) is responsible for risk assessment and risk management in the post-market surveillance of the U.S. medical device industry. One of the FDA regulatory mechanisms, the Medical Device Reporting System (MDR) is an adverse event reporting system intended to provide the FDA with advance warning of device problems. It includes voluntary reporting for individuals, and mandatory reporting for device manufacturers. ^ In a study of alleged breast implant safety problems, this research examines the organizational processes by which the FDA gathers data on adverse events and uses adverse event reporting systems to assess and manage risk. The research reviews the literature on problem recognition, risk perception, and organizational learning to understand the influence highly publicized events may have on adverse event reporting. Understanding the influence of an environmental factor, such as publicity, on adverse event reporting can provide insight into the question of whether the FDA's adverse event reporting system operates as an early warning system for medical device problems. ^ The research focuses on two main questions. The first question addresses the relationship between publicity and the voluntary and mandatory reporting of adverse events. The second question examines whether government agencies make use of these adverse event reports. ^ Using quantitative and qualitative methods, a longitudinal study was conducted of the number and content of adverse event reports regarding breast implants filed with the FDA's medical device reporting system during 1985–1991. To assess variation in publicity over time, the print media were analyzed to identify articles related to breast implant failures. ^ The exploratory findings suggest that an increase in media activity is related to an increase in voluntary reporting, especially following periods of intense media coverage of the FDA. However, a similar relationship was not found between media activity and manufacturers' mandatory adverse event reporting. A review of government committee and agency reports on the FDA published during 1976–1996 produced little evidence to suggest that publicity or MDR information contributed to problem recognition, agenda setting, or the formulation of policy recommendations. ^ The research findings suggest that the reporting of breast implant problems to FDA may reflect the perceptions and concerns of the reporting groups, a barometer of the volume and content of media attention. ^
Resumo:
It has been demonstrated previously that the mammalian heart cannot sustain physiologic levels of pressure-volume work if ketone bodies are the only substrates for respiration. In order to determine the metabolic derangement responsible for contractile failure in hearts utilizing ketone bodies, rat hearts were prefused at a near-physiologic workload in a working heart apparatus with acetoacetate and competing or alternate substrates including glucose, lactate, pyruvate, propionate, leucine, isoleucine, valine and acetate. While the pressure-volume work for hearts utilizing glucose was stable for 60 minutes of perfusion, performance fell by 30 minutes for hearts oxidizing acetoacetate as the sole substrate. The tissue content of 2-oxoglutarate and its transamination product, glutamate, were elevated in hearts utilizing acetoacetate while succinyl-CoA was decreased suggesting impaired flux through the citric acid cycle at the level of 2-oxoglutarate dehydrogenase. Further studies indicated that the inhibition of 2-oxoglutarate dehydrogenase developed prior to the onset of contractile failure and that the inhibition of the enzyme may be related to sequestration of the required cofactor, coenzyme A, as the thioesters acetoacetyl-CoA and acetyl-CoA. The contractile failure was not observed when glucose, lactate, pyruvate, propionate, valine or isoleucine were present together with acetoacetate, but the addition of acetate or leucine to acetoacetate did not improve performance indicating that improved performance is not mediated through the provision of additional acetyl-CoA. Furthermore, addition of competing substrates that improved function did not relieve the inhibition of 2-oxoglutarate dehydrogenase and actually resulted in the further accumulation of citric acid cycle intermediates "upstream" of 2-oxoglutarate dehydrogenase (2-oxoglutarate, glutamate, citrate and malate). Studies with (1-$\sp{14}$C) pyruvate indicate that the utilization of ketone bodies is associated with activation of NADP$\sp+$dependent malic enzyme and enrichment of the C4 pool of the citric acid cycle. The results suggest that contractile failure induced by ketone bodies in rat heart results from inhibition of 2-oxoglutarate dehydrogenase and that reversal of contractile failure is dissociated from relief of the inhibition, but rather is due to the entry of carbon units into the citric acid cycle as compounds other than acetyl-CoA. This mechanism of enrichment (anaplerosis) provides oxaloacetate for condensation with acetyl-CoA derived from ketone bodies allowing continued energy production by sustaining flux through a span of the citric acid cycle up to the point of inhibition at 2-oxoglutarate dehydrogenase for energy production thereby producing the reducing equivalents necessary to sustain oxidative phosphorylation. ^