5 resultados para Voltage polarity

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defects in apical-basal cell polarity and abnormal expression of cell polarity determinants are linked to human cancer. Loss of polarity is highly correlated with malignancy. In Drosophila, perturbation of apical-basal polarity, including overexpressing the apical determinant Crumbs, can lead to uncontrolled tissue growth. Cells mutant for the basolateral determinant scribble overproliferate and can form neoplastic tumors. Interestingly, scribble mutant clones that arise in wild-type tissues are eliminated and therefore do not manifest their tumorigenic potential. However, the mechanisms by which cell polarity coordinates with growth control pathways in developing organs to achieve appropriate organ size remain obscure. To investigate the function of apical determinants in growth regulation, I investigated the mechanism by which the apical determinant Crumbs affects growth in Drosophila imaginal discs. I found that crumbs gain and loss of function cause overgrowth and induction of Hippo target genes. In addition, Crumbs is required for the proper localization of Expanded, an upstream component of the Hippo pathway. Furthermore, we uncoupled the cell polarity and growth control function of Crb through structure-functional analysis. Taken together, our data identify a role of Crb in growth regulation specifically through modulation of the Hippo pathway. To further explore the role of polarity in growth control, I investigated how cells mutant for basolateral determinants are eliminated by using patches of cells mutant for scribble (scribble mutant clones) as a model system. We found that competitive cell-cell interactions eliminate tumorigenic scribble cells by modulation of the Hippo pathway. The regulation of Hippo signaling is required and sufficient to restrain the tumorous growth of scribble mutant cells. Artificially increasing the relative fitness of scribble mutant cells unleashes their tumorigenic potential. Therefore, we have identified a novel tumor-suppression mechanism that depends on signaling between normal and tumorigenic cells. These data identify evasion of cell competition as a critical step toward malignancy and illustrate a role for wild-type tissue in eliminating abnormal cells and preventing the formation of tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-CAM 105 has been identified as a cell adhesion molecule (CAM) based on the ability of monospecific and monovalent anti-cell-CAM 105 antibodies to inhibit the reaggregation of rat hepatocytes. Although one would expect to find CAMs concentrated in the lateral membrane domain where adhesive interactions predominate, immunofluorescence analysis of rat liver frozen sections revealed that cell-CAM 105 was present exclusively in the bile canalicular (BC) domain of the hepatocyte. To more precisely define the in situ localization of cell-CAM 105, immunoperoxidase and electron microscopy were used to analyze intact and mechanically dissociated fixed liver tissue. Results indicate that although cell-CAM 105 is apparently restricted to the BC domain in situ, it can be detected in the pericanalicular region of the lateral membranes when accessibility to lateral membranes is provided by mechanical dissociation. In contrast, when hepatocytes were labeled following incubation in vitro under conditions used during adhesion assays, cell-CAM 105 had redistributed to all areas of the plasma membrane. Immunofluorescence analysis of primary hepatocyte cultures revealed that cell-CAM 105 and two other BC proteins were localized in discrete domains reminscent of BC while cell-CAM 105 was also present in regions of intercellular contact. These results indicate that the distribution of cell-CAM 105 under the experimental conditions used for cell adhesion assays differs from that in situ and raises the possibility that its adhesive function may be modulated by its cell surface distribution. The implications of these and other findings are discussed with regard to a model for BC formation.^ Analysis of molecular events involved in BC formation would be accelerated if an in vitro model system were available. Although BC formation in culture has previously been observed, repolarization of cell-CAM 105 and two other domain-specific membrane proteins was incomplete. Since DMSO had been used by Isom et al. to maintain liver-specific gene expression in vitro, the effect of this differentiation system on the polarity of these membrane proteins was examined. Based on findings presented here, DMSO apparently prolongs the expression and facilitates polarization of hepatocyte membrane proteins in vitro. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High voltage-activated (HVA) calcium channels from rat brain and rabbit heart are expressed in Xenopus laevis oocytes and their modulation by protein kinases studied. A subtype of the HVA calcium current expressed by rat brain RNA is potentiated by the phospholipid- and calcium-dependent protein kinase (PKC). The calcium channel clone $\alpha\sb{\rm1C}$ from rabbit heart is modulated by the cAMP-dependent protein kinase (PKA), and another factor present in the cytoplasm.^ The HVA calcium channels from rat brain do not belong to the L-type subclass since they are insensensitive to dihydropyridine (DHP) agonists and antagonists. The expressed currents do contain a N-type fraction which is identified by inactivation at depolarized potentials, and a P-type fraction as defined by blockade by the venom of the funnel web spider Agelenopsis Aperta. A non N-type fraction of this current is potentiated, by using phorbol esters to activate PKC. This residual fraction of current resembles the newly described Q-type channel from cerebellar granule cells in its biophysical properties, and potentiation by activation of PKC.^ The $\alpha\sb{\rm1C}$ clone from rabbit heart is expressed in oocytes and single-channel currents are measured using the cell-attached and cell-excised patch clamp technique. The single-channel current runs down within two minutes after patch excision into normal saline bath solution. The catalytic subunit of PKA + MgATP is capable of reversing this rundown for over 15 minutes. There also appears to be an additional factor present in the cytoplasm necessary for channel activity as revealed in experiments where PKA failed to prevent rundown.^ These data are important in that these types of channels are involved in synaptic transmission at many different types of synapses. The mammalian synapse is not accessible for these types of studies, however, the oocyte expression system allows access to HVA calcium channels for the study of their modulation by phosphorylation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term potentiation (LTP) is a rapidly induced and long lasting increase in synaptic strength and is the leading cellular model for learning and memory in the mammalian brain. LTP was first identified in the hippocampus, a structure implicated in memory formation. LTP induction is dependent on postsynaptic Ca2+ increases mediated by N-methyl-D-aspartate (NMDA) receptors. Activation of other postsynaptic routes of Ca2+ entry, such as voltage-dependent Ca2+ channels (VDCCs) have subsequently been shown to induce a long-lasting increase in synaptic strength. However, it is unknown if VDCC-induced LTP utilized similar cellular mechanisms as the classical NMDA receptor-dependent LTP and if these two forms of LTP display similar properties. This dissertation determines the similarities and differences in VDCC and NMDA receptor-dependent LTP in area CA1 of hippocampal slices and demonstrates that VDCCs and NMDA receptors activate similar cellular mechanisms, such as protein kinases, to induce LTP. However, VDCC and NMDA receptor activated LTP induction mechanisms are compartmentalized in the postsynaptic neuron, such that they do not interact. Consistent with activation properties of NMDA receptors and VDCCs, NMDA receptor and VDCC-dependent LTP have different induction properties. In contrast to NMDA-dependent LTP, VDCC-induced potentiation does not require evoked presynaptic stimulation or display input specificity. These results indicate that there are two different routes of postsynaptic Ca2+ which can induce LTP and the compartmentation of VDCCs and NMDA receptors and/or their resulting Ca2+ increases may account for the distinction between these LTP induction mechanisms.^ One of the molecular targets for postsynaptic Ca2+ that is required for the induction of LTP is protein kinases. Evidence for the role of protein kinase activity in LTP expression is either correlational or controversial. We have utilized a broad range and potent inhibitors of protein kinases to systematically examine the temporal requirement for protein kinases in the induction and expression of LTP. Our results indicate that there is a critical period of persistent protein kinase activity required for LTP induction activated by tetanic stimulation and extending until 20 min after HFS. In addition, our results suggest that protein kinase activity during and immediately after HFS is not sufficient for LTP induction. These results provide evidence for persistent and/or Ca2+ independent protein kinase activity involvement in LTP induction. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The essential p21-activated kinase (PAK), Shk1, is a critical component of a Ras/Cdc42/PAK complex required for cell viability, normal cell polarity, proper regulation of cytoskeletal dynamics, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. While cellular functions of PAKs have been described in eukaryotes from yeasts to mammals, the molecular mechanisms of PAK regulation and function are poorly understood. This study has characterized a novel Shk1 inhibitor, Skb15, and, in addition, identified the cell polarity regulator, Tea1, as a potential biological substrate of Shk1 in S. pombe. Skb15 is a highly conserved WD repeat protein that was discovered from a two-hybrid screen for proteins that interact with the catalytic domain of Shk1. Molecular data indicate that Skb15 negatively regulates Shk1 kinase activity in S. pombe cells. A null mutation in the skb15 gene is lethal and results in deregulation of actin polymerization and localization, microtubule biogenesis, and the cytokinetic machinery, as well as a substantial uncoupling of these processes from the cell cycle. Loss of Skb15 function is suppressed by partial loss of Shk1, demonstrating that negative regulation of Shk1 by Skb15 is required for proper execution of cytoskeletal remodeling and cytokinetic functions. A mouse homolog of Skb15 can substitute for its counterpart in fission yeast, demonstrating that Skb15 protein function has been substantially conserved through evolution. ^ Our laboratory has recently demonstrated that Shk1, in addition to regulating actin cytoskeletal organization, is required for proper regulation of microtubule dynamics in S. pombe cells. The Shk1 protein localizes to interphase and mitotic microtubules, the septum-forming region, and cell ends. This pattern of localization overlaps with that of the cell polarity regulator, Tea1, in S. pombe cells. The tea1 gene was identified by Paul Nurse's laboratory from a screen for genes involved in the control of cell morphogenesis in S. pombe. In contrast to wild type S. pombe cells, which are rod shaped, tea1 null cells are often bent and/or branched in shape. The Tea1 protein localizes to the cell ends, like Shk1, and the growing tips of interphase microtubules. Thus, experiments were performed to investigate whether Tea1 interacts with Shk1. The tea1 null mutation strongly suppresses the loss of function of Skb15, an essential inhibitor of Shk1 function. All defects associated with the skb15 mutation, including defects in F-actin organization, septation, spindle elongation, and chromosome segregation, are suppressed by tea1Δ, suggesting that Tea1 may function in these diverse processes. Consistent with a role for Tea1 in cytokinesis, tea1Δ cells have a modest cell separation defect that is greatly exacerbated by a shk1 mutation and, like Shk1, Tea1 localizes to the septation site. Molecular analyses showed that Tea1 phosphorylation is significantly dependent on Shk1 function in vivo and that bacterially expressed Tea1 protein is directly phosphorylated by recombinant Shk1 kinase in vitro. Taken together, these results identify Tea1 as a potential biological substrate of Shk1 in S. pombe. ^ In summary, this study provides new insights into a conserved regulatory mechanism for PAKs, and also begins to uncover the molecular mechanisms by which the Ras/Cdc42/PAK complex regulates the microtubule and actin cytoskeletons and cell growth polarization in fission yeast. ^