6 resultados para Vitamin B-12 Deficiency

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin B$\sb6$ (or pyridoxal 5$\sp\prime$-phosphate, PLP) is an essential, ubiquitous coenzyme that affects many aspects of amino acid and cellular metabolism in all organisms. The goal of this thesis is to examine the regulation of PLP biosynthesis in Escherichia coli K-12. First, PdxH oxidase is a PLP biosynthetic enzyme, which uses molecular oxygen as an electron acceptor under aerobic assay conditions. To test if facultative anaerobic E. coli uses another enzyme to replace the function of PdxH oxidase anaerobically, suppressors of a pdxH null mutant were isolated anaerobically after 2-aminopurine or spontaneous mutagenesis. Only one specific bypass mutation in another PLP biosynthetic gene pdxJ was found, suggesting that PdxH oxidase is able to function anaerobically and PdxT utilizes D-1-deoxyxyulose as a substrate. Second, regulation of the serC (pdxF)-aroA operon, which is involved the biosynthesis of L-serine, PLP and aromatic compounds was examined. A serC (pdxF) single gene transcript and a serC (pdXf)-aroA cotranscript initiated at P$\sb{serC\ (pdxF)}$ upstream of serC (pdxF) were detected. The expression of the operon is activated by leucine responsive regulatory protein (LRP) and repressed by cAMP receptor protein-cAMP complex (CRP$\cdot$cAMP) at the transcriptional level. LRP activates the operon by directly binding to the upstream consensus box. Binding of CRP$\cdot$cAMP to the upstream CRP box diminishes the activation effect of LRP. However, deletion of the CRP box did not affect the repression of CRP$\cdot$cAMP, suggesting that CRP$\cdot$cAMP may repress the operon indirectly by stimulating the activity or level of an unidentified repressor. The overall effect of this regulation is to maximize the expression of the operon when the cells are growing in minimal-glucose medium. In addition, the binding and the transcription of P$\sb{serC\ (pdxF)}$ by RNA polymerase require a supercoiled circular DNA, indicating that DNA supercoiling affects the transcription of the operon. Third, regulation of another PLP biosynthetic gene gapB was also examined. gapB is activated by CRP$\cdot$cAMP and repressed by catabolic repressor activator protein (CRA). However, the activation of CRP$\cdot$cAMP is epistatic to the repression of CRA. Due to the CRA repression, gapB was expressed at a low level in all the media tested, suggesting that it may be the rate-limiting step of PLP biosynthesis. In summary, unlike genes in many biosynthetic pathways, PLP biosynthetic genes are regulated by global regulators that are important for carbon and amino acid metabolism, instead of the end product(s) of the pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrazine $\rm (N\sb2H\sb4),$ an important liquid propellant and derivative chemical for pharmaceuticals and pesticides, produces coma and convulsions sometimes resulting in death. Hyperammonia was found in rabbits exposed to 18 mg/Kg of hydrazine. Results of Part One of this study of rabbits emphasize the importance of acute ammonia toxicity during the first three hours following exposure to hydrazine. At no time during this post exposure period did a significant reduction of hydrazine to ammonia occur. Therefore, the elevated blood ammonia was apparently secondary to the effects of hydrazine on metabolic pathways. Further, the results support the theory of competitive inhibition of ammonia by hydrazine and emphasize the need to monitor plasma ammonia following toxic exposure to hydrazine.^ In Part Two, urea, ammonia, CO$\sb2,$ pH, glucose, sodium, potassium, chloride and creatinine were measured for up to 4 hours following injection of 18 mg/Kg of hydrazine in each of two groups of five rabbits. One group received normal saline and the other group received 5% dextrose and water/normal saline. Hyperammonemia, minimal metabolic acidosis and hyperglycemia without increased urea were found in the rabbits receiving normal saline intravenous infusion and hydrazine injection. Hence, hypoglycemia does not appear to play a role in the development of hyperammonemia. A significant difference in the elevated ammonia levels between the two groups receiving dextrose and water/normal saline and normal saline at 1 hour occurred. There was no significant difference in the elevated ammonia levels seen between the two groups receiving dextrose and water/normal saline and normal saline at 2.5 and 4 hours. Thus at 1 hour the group receiving dextrose was able to utilize excess glucose to detoxify ammonia, while at 2.5 and 4 hours there was no significant difference in the two groups' ability to detoxify ammonia.^ Findings support the theory that hydrazine inhibits the formation of urea resulting in hyperammonemia. Results suggest that hydrazine at 18 mg/Kg, a known hypoglycemic agent, causes serious hyperammonemia without increasing urea production during hyperglycemia. These experiments support a unified theory for the toxic mechanism of action of hydrazine, i.e., the intermediary metabolic effects of hydrazine are brought about by the formation of hydrazones which encumber ATP synthesis and vitamin B$\sb6$ enzymatic reactions. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Non-Hodgkin's Lymphoma (NHLs) are neoplasms of the immune system. Currently, less than 1% of the etiology of the 22,000 newly diagnosed lymphoma cases in the U.S.A. every year is known. This disease has a significant prevalence and high mortality rate. Cell growth in lymphomas has been shown to be an important parameter in aggressive NHL when establishing prognosis, as well as an integral part in the pathophysiology of the disease process. While many aggressive B cell NHLs respond initially to chemotherapeutic regimens such as CHOP-bleo (adriamycin, vincristine and bleomycin) etc., relapse is common, and the patient is then often refractory to further salvage treatment regimens.^ To assess their potential to inhibit aggressive B cell NHLs and induce apoptosis (also referred to as programmed cell death (PCD)), it was proposed to utilize the following biological agents-liposomal all-trans retinoic acid (L-ATRA) which is a derivative of Vitamin A in liposomes and Vitamin D3. Preliminary evidence indicates that L-ATRA may inhibit cell growth in these cells and may induce PCD as well. Detailed studies were performed to understand the above phenomena by L-ATRA and Vitamin D3 in recently established NHL-B cell lines and primary cell cultures. The gene regulation involved in the case of L-ATRA was also delineated. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deficiency of the enzyme adenosine deaminase (ADA) results in severe lymphopenia in humans. Mice with an inactivating mutation in the ADA gene also exhibit profound lymphopenia, as well as pulmonary insufficiency and ribcage abnormalities. In fact, the mouse model has a phenotype that is remarkably similar to that of the human disease, making the mice valuable tools for unraveling the mechanism of lymphocyte destruction in absence of this housekeeping gene. T cell deficiency in ADA deficiency has been extensively studied by others, revealing a block in early thymocyte development. In contrast, our studies revealed that early B cell development in the bone marrow is normal. ADA-deficient mice, however, exhibit profound defects in germinal center formation, preventing antigen-dependent B cell maturation in the spleen. ADA-deficient spleen B cells display significant defects in proliferation and activation signaling, and produce more IgM than their normal counterparts, suggesting that extrafollicular plasmablasts are overrepresented. B cells from ADA-deficient mouse spleens undergo apoptosis more readily than those from normal mouse spleens. Levels of ADA's substrates, adenosine and 2′-deoxyadenosine, are elevated in both bone marrow and spleen in ADA-deficient mice. S ′-adenosyihomoeysteine hydrolase (SAH hydrolase) activity is significantly inhibited in both locales, as well. dATP levels, though, are only elevated in spleen, where B cell development is impaired, and not in bone marrow, where B cell ontogeny is normal. This finding points to dATP as the causative agent of lymphocyte death in ADA deficiency. ADA deficiency results in inhibition of the enzyme ribonucleotide reductase, thereby depleting nucleoside pools needed for DNA repair. Another mouse model that lacks a functional gene encoding a protein involved in DNA repair and/or cell cycle checkpoint regulation, p53-binding protein 1, exhibits blocks in T and B cell development that are similar to those seen in ADA-deficient mice. Unraveling the mechanisms of lymphocyte destruction in ADA deficiency may further understanding of lymphocyte biology, facilitate better chemotherapeutic treatment for lymphoproliferative diseases, and improve gene and enzyme therapy regimens attempted for ADA deficiency. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vitamin D is essential in maintaining the bone health and Calcium homeostasis in the body. These actions are mediated through the Vitamin D receptors (VDR) present in cells through which the activated vitamin D acts [1]. In the past, it was known that these receptors existed in the intestine and bone cell. However, recent discovery of VDR in other tissues as well, has broadened the action of Vitamin D and increased its adequate intake [1].^ In the past, Vitamin D deficiency was most common among institutionalized, elderly patients and children and thought to be extinct in the healthy population. However, recent evidence has shown that, prevalence of vitamin D deficiency is increasing into an epidemic status in the overall population of the United States, including the healthy individuals [2-3]. The increased daily-recommended requirement and other multiple factors are responsible for the re-emergence of this epidemic [4-5]. Some of these factors could be used to control the epidemic. Studies have also shown the association between vitamin D deficiency and increased risk for developing chronic diseases such as diabetes, hypertension, multiple sclerosis, arthritis, and some fatal cancers like prostate, colon and breast cancers [1, 4, 6-14]. This issue results in increased disease burden, morbidity and mortality in the community [15-20].^ Methods: The literature search was conducted using the University of Texas Health Science Center at Houston (UTHSC) and University of Texas Southwestern Medical Center (UTSW) online library. The key search terms used are “vitamin D deficiency And prevalence Or epidemiology”, “vitamin D deficiency And implication And public health” using PubMed and Mesh database and “vitamin D deficiency” using systematic reviews. The search is limited to Humans and the English language. The articles considered for the review are limited to Healthy US population to avoid health conditions that predispose the population to vitamin D deficiency. Only US population is considered to narrow down the study.^ Results: There is an increased prevalence of low levels of Vitamin D levels below the normal range in the US population regardless of age and health status. Vitamin D deficiency is also associated with increased risk of chronic illnesses and fatal cancers.^ Conclusion: This increased prevalence and the association of the deficiency with increased all-cause mortality has increased the economic burden and compromised the quality of life among the population. This necessitates the health care providers to routinely screen their patients for the Vitamin D status and counsel them to avoid the harmful effects of the Vitamin D deficiency. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hyper IgE syndrome (HIES) is a multisystem disorder resulting in bone and immune system abnormalities. It is associated with mutations in STAT3, which disrupt protein domains responsible for transcriptional function. Patients with HIES display osteoporosis and enhanced inflammatory cytokine production similar to hematopoietic Stat3-deficient mice. Since osteoclast and inflammatory cytokine genes are NFκB targets, these observations indicate a possible deregulation of NFκB signaling in both mice and humans with STAT3-deficiency. Here, we sought to examine the role of STAT3 in the regulation of NFκB-mediated gene expression through analysis of three HIES STAT3 point mutations in both hematopoietic and non- hematopoietic cells. We found that IL-6-induced tyrosine phosphorylation of STAT3 was partially or completely abrogated by HIES mutations in the transactivation domain (V713L) or SH2 domain (V637M), respectively, in both hematopoietic and non- hematopoietic cells. By contrast, IL-6-induced tyrosine phosphorylation of an HIES mutant in the STAT3 DNA-binding domain (R382W) was intact. The R382W and V713L mutants significantly reduced IL-6-dependent STAT3 transcriptional activity in reporter gene assays. Moreover, the R382W and V637M mutants significantly diminished IL-6-responsive expression of the endogenous STAT3 target gene, Socs3, as assessed by quantitative real-time PCR (qPCR) in the RAW macrophage cell line. These observations indicate the HIES mutants dominantly suppress the transcriptional activity of wild type STAT3, albeit to varying degrees. All three HIES mutants enhanced LPS-induced expression of the NFκB target genes IL6 (IL-6), Cxcl10 (IP- 10), and Tnf (TNFα) in RAW cells, as indicated by qPCR. Furthermore, overexpression of wild type STAT3 in Stat3-deficient murine embryonic fibroblasts significantlyreduced LPS-stimulated expression of IL6, Cxcl10, and IL12p35. In addition, in aprimary murine osteoclast differentiation assay, a STAT3-specific SH2 domain inhibitor led to significantly increased levels of osteoclast-specific gene expression. These results suggest that STAT3 serves as a negative regulator of NFκB-mediated gene expression, and furthermore imply that STAT3 mutations associated with HIES contribute to the osteopenia and inflammation observed in HIES patients.