6 resultados para Visual Information

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To better understand synaptic signaling at the mammalian rod bipolar cell terminal and pave the way for applying genetic approaches to the study of visual information processing in the mammalian retina, synaptic vesicle dynamics and intraterminal calcium were monitored in terminals of acutely isolated mouse rod bipolar cells and the number of ribbon-style active zones quantified. We identified a releasable pool, corresponding to a maximum of 7 s. The presence of a smaller, rapidly releasing pool and a small, fast component of refilling was also suggested. Following calcium channel closure, membrane surface area was restored to baseline with a time constant that ranged from 2 to 21 s depending on the magnitude of the preceding Ca2+ transient. In addition, a brief, calcium-dependent delay often preceded the start of onset of membrane recovery. Thus, several aspects of synaptic vesicle dynamics appear to be conserved between rod-dominant bipolar cells of fish and mammalian rod bipolar cells. A major difference is that the number of vesicles available for release is significantly smaller in the mouse rod bipolar cell, both as a function of the total number per neuron and on a per active zone basis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visual short-term memory (VSTM) is the storage of visual information over a brief time period (usually a few seconds or less). Over the past decade, the most popular task for studying VSTM in humans has been the change detection task. In this task, subjects must remember several visual items per trial in order to identify a change following a brief delay interval. Results from change detection tasks have shown that VSTM is limited; humans are only able to accurately hold a few visual items in mind over a brief delay. However, there has been much debate in regard to the structure or cause of these limitations. The two most popular conceptualizations of VSTM limitations in recent years have been the fixed-capacity model and the continuous-resource model. The fixed-capacity model proposes a discrete limit on the total number of visual items that can be stored in VSTM. The continuous-resource model proposes a continuous-resource that can be allocated among many visual items in VSTM, with noise in item memory increasing as the number of items to be remembered increases. While VSTM is far from being completely understood in humans, even less is known about VSTM in non-human animals, including the rhesus monkey (Macaca mulatta). Given that rhesus monkeys are the premier medical model for humans, it is important to understand their VSTM if they are to contribute to understanding human memory. The primary goals of this study were to train and test rhesus monkeys and humans in change detection in order to directly compare VSTM between the two species and explore the possibility that direct species comparison might shed light on the fixed-capacity vs. continuous-resource models of VSTM. The comparative results suggest qualitatively similar VSTM for the two species through converging evidence supporting the continuous-resource model and thereby establish rhesus monkeys as a good system for exploring neurophysiological correlates of VSTM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visual working memory (VWM) involves maintaining and processing visual information, often for the purpose of making immediate decisions. Neuroimaging experiments of VWM provide evidence in support of a neural system mainly involving a fronto-parietal neuronal network, but the role of specific brain areas is less clear. A proposal that has recently generated considerable debate suggests that a dissociation of object and location VWM occurs within the prefrontal cortex, in dorsal and ventral regions, respectively. However, re-examination of the relevant literature presents a more robust distribution suggestive of a general caudal-rostral dissociation from occipital and parietal structures, caudally, to prefrontal regions, rostrally, corresponding to location and object memory, respectively. The purpose of the present study was to identify a dissociation of location and object VWM across two imaging methods (magnetoencephalography, MEG, and functional magnetic imaging, fMRI). These two techniques provide complimentary results due the high temporal resolution of MEG and the high spatial resolution of fMRI. The use of identical location and object change detection tasks was employed across techniques and reported for the first time. Moreover, this study is the first to use matched stimulus displays across location and object VWM conditions. The results from these two imaging methods provided convergent evidence of a location and object VWM dissociation favoring a general caudal-rostral rather than the more common prefrontal dorsal-ventral view. Moreover, neural activity across techniques was correlated with behavioral performance for the first time and provided convergent results. This novel approach of combining imaging tools to study memory resulted in robust evidence suggesting a novel interpretation of location and object memory. Accordingly, this study presents a novel context within which to explore the neural substrates of WM across imaging techniques and populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than a century ago Ramon y Cajal pioneered the description of neural circuits. Currently, new techniques are being developed to streamline the characterization of entire neural circuits. Even if this 'connectome' approach is successful, it will represent only a static description of neural circuits. Thus, a fundamental question in neuroscience is to understand how information is dynamically represented by neural populations. In this thesis, I studied two main aspects of dynamical population codes. ^ First, I studied how the exposure or adaptation, for a fraction of a second to oriented gratings dynamically changes the population response of primary visual cortex neurons. The effects of adaptation to oriented gratings have been extensively explored in psychophysical and electrophysiological experiments. However, whether rapid adaptation might induce a change in the primary visual cortex's functional connectivity to dynamically impact the population coding accuracy is currently unknown. To address this issue, we performed multi-electrode recordings in primary visual cortex, where adaptation has been previously shown to induce changes in the selectivity and response amplitude of individual neurons. We found that adaptation improves the population coding accuracy. The improvement was more prominent for iso- and orthogonal orientation adaptation, consistent with previously reported psychophysical experiments. We propose that selective decorrelation is a metabolically inexpensive mechanism that the visual system employs to dynamically adapt the neural responses to the statistics of the input stimuli to improve coding efficiency. ^ Second, I investigated how ongoing activity modulates orientation coding in single neurons, neural populations and behavior. Cortical networks are never silent even in the absence of external stimulation. The ongoing activity can account for up to 80% of the metabolic energy consumed by the brain. Thus, a fundamental question is to understand the functional role of ongoing activity and its impact on neural computations. I studied how the orientation coding by individual neurons and cell populations in primary visual cortex depend on the spontaneous activity before stimulus presentation. We hypothesized that since the ongoing activity of nearby neurons is strongly correlated, it would influence the ability of the entire population of orientation-selective cells to process orientation depending on the prestimulus spontaneous state. Our findings demonstrate that ongoing activity dynamically filters incoming stimuli to shape the accuracy of orientation coding by individual neurons and cell populations and this interaction affects behavioral performance. In summary, this thesis is a contribution to the study of how dynamic internal states such as rapid adaptation and ongoing activity modulate the population code accuracy. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many mental disorders disrupt social skills, yet few studies have examined how the brain processes social information. Functional neuroimaging, neuroconnectivity and electrophysiological studies suggest that orbital frontal cortex plays important roles in social cognition, including the analysis of information from faces, which are important cues in social interactions. Studies in humans and non-human primates show that damage to orbital frontal cortex produces social behavior impairments, including abnormal aggression, but these studies have failed to determine whether damage to this area impairs face processing. In addition, it is not known whether damage early in life is more detrimental than damage in adulthood. This study examined whether orbital frontal cortex is necessary for the discrimination of face identity and facial expressions, and for appropriate behavioral responses to aggressive (threatening) facial expressions. Rhesus monkeys (Macaca mulatta) received selective lesions of orbital frontal cortex as newborns or adults. As adults, these animals were compared with sham-operated controls on their ability to discriminate between faces of individual monkeys and between different facial expressions of emotion. A passive visual paired-comparison task with standardized rhesus monkey face stimuli was designed and used to assess discrimination. In addition, looking behavior toward aggressive expressions was assessed and compared with that of normal control animals. The results showed that lesion of orbital frontal cortex (1) may impair discrimination between faces of individual monkeys, (2) does not impair facial expression discrimination, and (3) changes the amount of time spent looking at aggressive (threatening) facial expressions depending on the context. The effects of early and late lesions did not differ. Thus, orbital frontal cortex appears to be part of the neural circuitry for recognizing individuals and for modulating the response to aggression in faces, and the plasticity of the immature brain does not allow for recovery of these functions when the damage occurs early in life. This study opens new avenues for the assessment of rhesus monkey face processing and the neural basis of social cognition, and allows a better understanding of the nature of the neuropathology in patients with mental disorders that disrupt social behavior, such as autism. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three articles that comprise this dissertation describe how small area estimation and geographic information systems (GIS) technologies can be integrated to provide useful information about the number of uninsured and where they are located. Comprehensive data about the numbers and characteristics of the uninsured are typically only available from surveys. Utilization and administrative data are poor proxies from which to develop this information. Those who cannot access services are unlikely to be fully captured, either by health care provider utilization data or by state and local administrative data. In the absence of direct measures, a well-developed estimation of the local uninsured count or rate can prove valuable when assessing the unmet health service needs of this population. However, the fact that these are “estimates” increases the chances that results will be rejected or, at best, treated with suspicion. The visual impact and spatial analysis capabilities afforded by geographic information systems (GIS) technology can strengthen the likelihood of acceptance of area estimates by those most likely to benefit from the information, including health planners and policy makers. ^ The first article describes how uninsured estimates are currently being performed in the Houston metropolitan region. It details the synthetic model used to calculate numbers and percentages of uninsured, and how the resulting estimates are integrated into a GIS. The second article compares the estimation method of the first article with one currently used by the Texas State Data Center to estimate numbers of uninsured for all Texas counties. Estimates are developed for census tracts in Harris County, using both models with the same data sets. The results are statistically compared. The third article describes a new, revised synthetic method that is being tested to provide uninsured estimates at sub-county levels for eight counties in the Houston metropolitan area. It is being designed to replicate the same categorical results provided by a current U.S. Census Bureau estimation method. The estimates calculated by this revised model are compared to the most recent U.S. Census Bureau estimates, using the same areas and population categories. ^