8 resultados para Visual Effects Industry

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many mental disorders disrupt social skills, yet few studies have examined how the brain processes social information. Functional neuroimaging, neuroconnectivity and electrophysiological studies suggest that orbital frontal cortex plays important roles in social cognition, including the analysis of information from faces, which are important cues in social interactions. Studies in humans and non-human primates show that damage to orbital frontal cortex produces social behavior impairments, including abnormal aggression, but these studies have failed to determine whether damage to this area impairs face processing. In addition, it is not known whether damage early in life is more detrimental than damage in adulthood. This study examined whether orbital frontal cortex is necessary for the discrimination of face identity and facial expressions, and for appropriate behavioral responses to aggressive (threatening) facial expressions. Rhesus monkeys (Macaca mulatta) received selective lesions of orbital frontal cortex as newborns or adults. As adults, these animals were compared with sham-operated controls on their ability to discriminate between faces of individual monkeys and between different facial expressions of emotion. A passive visual paired-comparison task with standardized rhesus monkey face stimuli was designed and used to assess discrimination. In addition, looking behavior toward aggressive expressions was assessed and compared with that of normal control animals. The results showed that lesion of orbital frontal cortex (1) may impair discrimination between faces of individual monkeys, (2) does not impair facial expression discrimination, and (3) changes the amount of time spent looking at aggressive (threatening) facial expressions depending on the context. The effects of early and late lesions did not differ. Thus, orbital frontal cortex appears to be part of the neural circuitry for recognizing individuals and for modulating the response to aggression in faces, and the plasticity of the immature brain does not allow for recovery of these functions when the damage occurs early in life. This study opens new avenues for the assessment of rhesus monkey face processing and the neural basis of social cognition, and allows a better understanding of the nature of the neuropathology in patients with mental disorders that disrupt social behavior, such as autism. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Variants in the complement cascade genes and the LOC387715/HTRA1, have been widely reported to associate with age-related macular degeneration (AMD), the most common cause of visual impairment in industrialized countries. METHODS/PRINCIPAL FINDINGS: We investigated the association between the LOC387715 A69S and complement component C3 R102G risk alleles in the Finnish case-control material and found a significant association with both variants (OR 2.98, p = 3.75 x 10(-9); non-AMD controls and OR 2.79, p = 2.78 x 10(-19), blood donor controls and OR 1.83, p = 0.008; non-AMD controls and OR 1.39, p = 0.039; blood donor controls), respectively. Previously, we have shown a strong association between complement factor H (CFH) Y402H and AMD in the Finnish population. A carrier of at least one risk allele in each of the three susceptibility loci (LOC387715, C3, CFH) had an 18-fold risk of AMD when compared to a non-carrier homozygote in all three loci. A tentative gene-gene interaction between the two major AMD-associated loci, LOC387715 and CFH, was found in this study using a multiplicative (logistic regression) model, a synergy index (departure-from-additivity model) and the mutual information method (MI), suggesting that a common causative pathway may exist for these genes. Smoking (ever vs. never) exerted an extra risk for AMD, but somewhat surprisingly, only in connection with other factors such as sex and the C3 genotype. Population attributable risks (PAR) for the CFH, LOC387715 and C3 variants were 58.2%, 51.4% and 5.8%, respectively, the summary PAR for the three variants being 65.4%. CONCLUSIONS/SIGNIFICANCE: Evidence for gene-gene interaction between two major AMD associated loci CFH and LOC387715 was obtained using three methods, logistic regression, a synergy index and the mutual information (MI) index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three rhesus monkeys (Macaca mulatta) and four pigeons (Columba livia) were trained in a visual serial probe recognition (SPR) task. A list of visual stimuli (slides) was presented sequentially to the subjects. Following the list and after a delay interval, a probe stimulus was presented that could be either from the list (Same) or not from the list (Different). The monkeys readily acquired a variable list length SPR task, while pigeons showed acquisition only under constant list length condition. However, monkeys memorized the responses to the probes (absolute strategy) when overtrained with the same lists and probes, while pigeons compared the probe to the list in memory (relational strategy). Performance of the pigeon on 4-items constant list length was disrupted when blocks of trials of different list lengths were imbedded between the 4-items blocks. Serial position curves for recognition at variable probe delays showed better relative performance on the last items of the list at short delays (0-0.5 seconds) and better relative performance on the initial items of the list at long delays (6-10 seconds for the pigeons and 20-30 seconds for the monkeys and a human adolescent). The serial position curves also showed reliable primacy and recency effects at intermediate probe delays. The monkeys showed evidence of using a relational strategy in the variable probe delay task. The results are the first demonstration of relational serial probe recognition performance in an avian and suggest similar underlying dynamic recognition memory mechanisms in primates and avians. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To describe the spectrum and occurrence of occupational exposures of relevance to the respiratory system and their subsequent adverse effects within the service industries and occupations, as outlined by the U.S. Department of Labor Bureau of Labor Statistics Occupational Outlook Handbook, 2007. ^ Design. Systematic review of the literature from an Ovid search including years 1950 to 2008. Initially, occupational respiratory disease categories were searched, and then combined with each of the different occupations for a comprehensive review of the literature. ^ Results. Ten groups within the U.S. Department of Labor Bureau of Labor Statistics Occupational Outlook Handbook, 2007 were identified as having exposures leading to occupational respiratory disease. These include janitors/cleaners, dental personnel, cosmetology professionals, traffic police, veterinary personnel, firefighters, healthcare workers, bakers, and bar/restaurant workers. The most common respiratory disorder affecting this population was occupational asthma caused by many different exposures in each occupation. The biggest limitation was the absence of a uniform reporting method for occupational respiratory diseases. ^ Conclusion. There is evidence that there are risks for occupational respiratory disease in the services industry. ^ Key Words: occupational and respiratory disease and service industries ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson disease (PD) is a movement disorder affecting over one million Americans, and 1% of our population over 60 years of age. Currently, PD has an unknown cause, no predictive biomarker, and no cure, yet there are effective treatments (medicine and surgery) to chronically manage the motor symptoms. But, PD patients also develop cognitive symptoms (e.g., distractibility, executive dysfunction) that remain untreated or may decline as a result of treating the motor symptoms. To address this important issue, I measured covert orienting of attention and overt eye movements in PD patients to assess the patients' ability to automatically detect stimuli in their visual field, to predict and attend to where the stimuli would appear, and to volitionally look somewhere else. ^ PD patients completed the cognitive tasks under multiple treatment conditions, and their performance was compared to healthy adults. PD patients first completed the tasks after they had withdrawn from medication. Their unmedicated performance revealed exaggerated automatic orienting, poor predictability, and weak volitional orienting. PD patients then repeated the tasks while medication was giving its peak benefit. The medication returned automatic covert orienting toward normal but did not improve volitional covert orienting. Several PD patients completed the tasks a third time after receiving surgery (specifically, implantation of stimulating electrodes in a subcortical brain region to alleviate motor symptoms). The stimulation (without medication) returned automatic orienting toward normal, did not change predictability, and further impaired volitional orienting. Taken together, treatments prescribed to alleviate the motor symptoms (a patient's primary concern) only improve some cognitive functions. Future studies may establish criteria to predict which patients are more likely to have cognitive benefit from medication over surgery, or vice versa. ^ I have also hypothesized an anatomical model relating orienting circuitry to abnormal PD circuitry and the therapeutic targets. My results suggest medication is more effective restoring the orienting circuitry than stimulation. Further, automatic and volitional orienting abilities seem to be modulated independently, which differs from an earlier model proposing a dependent, inverse relationship. My results are further discussed in terms of response inhibition, response selection, and the location of the selection. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than a century ago Ramon y Cajal pioneered the description of neural circuits. Currently, new techniques are being developed to streamline the characterization of entire neural circuits. Even if this 'connectome' approach is successful, it will represent only a static description of neural circuits. Thus, a fundamental question in neuroscience is to understand how information is dynamically represented by neural populations. In this thesis, I studied two main aspects of dynamical population codes. ^ First, I studied how the exposure or adaptation, for a fraction of a second to oriented gratings dynamically changes the population response of primary visual cortex neurons. The effects of adaptation to oriented gratings have been extensively explored in psychophysical and electrophysiological experiments. However, whether rapid adaptation might induce a change in the primary visual cortex's functional connectivity to dynamically impact the population coding accuracy is currently unknown. To address this issue, we performed multi-electrode recordings in primary visual cortex, where adaptation has been previously shown to induce changes in the selectivity and response amplitude of individual neurons. We found that adaptation improves the population coding accuracy. The improvement was more prominent for iso- and orthogonal orientation adaptation, consistent with previously reported psychophysical experiments. We propose that selective decorrelation is a metabolically inexpensive mechanism that the visual system employs to dynamically adapt the neural responses to the statistics of the input stimuli to improve coding efficiency. ^ Second, I investigated how ongoing activity modulates orientation coding in single neurons, neural populations and behavior. Cortical networks are never silent even in the absence of external stimulation. The ongoing activity can account for up to 80% of the metabolic energy consumed by the brain. Thus, a fundamental question is to understand the functional role of ongoing activity and its impact on neural computations. I studied how the orientation coding by individual neurons and cell populations in primary visual cortex depend on the spontaneous activity before stimulus presentation. We hypothesized that since the ongoing activity of nearby neurons is strongly correlated, it would influence the ability of the entire population of orientation-selective cells to process orientation depending on the prestimulus spontaneous state. Our findings demonstrate that ongoing activity dynamically filters incoming stimuli to shape the accuracy of orientation coding by individual neurons and cell populations and this interaction affects behavioral performance. In summary, this thesis is a contribution to the study of how dynamic internal states such as rapid adaptation and ongoing activity modulate the population code accuracy. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To describe the spectrum and occurrence of occupational exposures of relevance to the respiratory system and their subsequent adverse effects within the service industries and occupations, as outlined by the U.S. Department of Labor Bureau of Labor Statistics Occupational Outlook Handbook, 2007. ^ Design. Systematic review of the literature from an Ovid search including years 1950 to 2008. Initially, occupational respiratory disease categories were searched, and then combined with each of the different occupations for a comprehensive review of the literature. ^ Results. Ten groups within the U.S. Department of Labor Bureau of Labor Statistics Occupational Outlook Handbook, 2007 were identified as having exposures leading to occupational respiratory disease. These include janitors/cleaners, dental personnel, cosmetology professionals, traffic police, veterinary personnel, firefighters, healthcare workers, bakers, and bar/restaurant workers. The most common respiratory disorder affecting this population was occupational asthma caused by many different exposures in each occupation. The biggest limitation was the absence of a uniform reporting method for occupational respiratory diseases. ^ Conclusion. There is evidence that there are risks for occupational respiratory disease in the services industry. ^ Key Words. occupational and respiratory disease and service industries ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal humans have one red and at least one green visual pigment genes. These genes are tightly linked as tandem repeats on the X chromosome and each of them has six exons. There is only one X-linked visual pigment gene in New World monkeys (NWMs) but the locus has three polymorphic alleles encoding red, yellow and green visual pigments, respectively. The spectral properties of the squirrel monkey and the marmoset (both NWMs) have been studied and partial sequences of the three alleles are available. To study the evolutionary history of these X-linked opsin genes in humans and NWMs, coding and intron sequences of the three squirrel monkey alleles and the three marmoset alleles were amplified by PCR followed by subcloning and sequencing. Introns 2 and 4 of the human red and green pigment genes were also sequenced. The results obtained are as follows: (1) The sequences of introns 2 and 4 of the human red and green opsin genes are significantly more similar between the two genes than are coding sequences, contrary to the usual situation where coding regions are better conserved in evolution than are introns. The high similarities in the two introns are probably due to recent gene conversion events during evolution of the human lineage. (2) Phylogenetic analysis of both intron and exon sequences indicates that the phylogenetic tree of the available primate opsin genes is the same as the species tree. The two human genes were derived from a gene duplication event after the divergence of the human and NWM lineages. The three alleles in each of the two NWM species diverged after the split of the two NWMs but have persisted in the population for at least 5 million years. (3) Allelic gene conversion might have occurred between the three squirrel monkey alleles. (4) A model of additive effect of hydroxyl-bearing amino acids on spectral tuning is proposed by treating some unknown variables as groups. Under the assumption that some residues have no effect, it is found that at least five amino acid residues, at positions 178 (3 nm), 180 (5 nm), 230 ($-$4 nm), 277 (9 nm) and 285 (13 nm), have linear spectral tuning effects. (5) Adaptive evolution of the opsin genes to different spectral peaks was observed at four residues that are important for spectral tuning. ^