3 resultados para Vision systems in welding
em DigitalCommons@The Texas Medical Center
Resumo:
A census of 925 U.S. colleges and universities offering masters and doctorate degrees was conducted in order to study the number of elements of an environmental management system as defined by ISO 14001 possessed by small, medium and large institutions. A 30% response rate was received with 273 responses included in the final data analysis. Overall, the number of ISO 14001 elements implemented among the 273 institutions ranged from 0 to 16, with a median of 12. There was no significant association between the number of elements implemented among institutions and the size of the institution (p = 0.18; Kruskal-Wallis test) or among USEPA regions (p = 0.12; Kruskal-Wallis test). The proportion of U.S. colleges and universities that reported having implemented a structured, comprehensive environmental management system, defined by answering yes to all 16 elements, was 10% (95% C.I. 6.6%–14.1%); however 38% (95% C.I. 32.0%–43.8%) reported that they had implemented a structured, comprehensive environmental management system, while 30.0% (95% C.I. 24.7%–35.9%) are planning to implement a comprehensive environmental management system within the next five years. Stratified analyses were performed by institution size, Carnegie Classification and job title. ^ The Osnabruck model, and another under development by the South Carolina Sustainable Universities Initiative, are the only two environmental management system models that have been proposed specifically for colleges and universities, although several guides are now available. The Environmental Management System Implementation Model for U.S. Colleges and Universities developed is an adaptation of the ISO 14001 standard and USEPA recommendations and has been tailored to U.S. colleges and universities for use in streamlining the implementation process. In using this implementation model created for the U.S. research and academic setting, it is hoped that these highly specialized institutions will be provided with a clearer and more cost-effective path towards the implementation of an EMS and greater compliance with local, state and federal environmental legislation. ^
Resumo:
Evaporative cooling systems continue to be associated with outbreaks of Legionnaires’ disease despite widely available maintenance guidelines intended to reduce these outbreaks. Yet, the guidelines vary widely regarding the recommendations that are made to maintain evaporative cooling systems and it is unclear whether guidelines were in place or, if they were, whether they were being followed when the outbreaks of Legionnaires’ disease occurred. Thus, this study was designed to conduct two systematic reviews of (1) evaporative cooling system maintenance guidelines; and (2) published Legionnaires’ disease outbreaks. For each maintenance guideline identified in the systematic review, recommended maintenance practices were abstracted and similarities and/or differences in the reported recommendations were assessed. Following the systematic review of outbreak investigations that meet the inclusion criteria established for the study, information about the state of the evaporative cooling system during the outbreak investigation was abstracted to summarize, when reported, which maintenance practices were implemented. As expected, the recommended maintenance procedures varied greatly across the guidelines and were not always specific. Overall, the outbreak investigations tended to report similar maintenance issues that were unclear in the maintenance guidelines. Generally, these maintenance issues were biocide use, microbiological testing, frequency of general inspections, and protocols and frequency of total system cleanings. The role in which non-standardized and generalized maintenance guidelines plays in the continued association between Legionnaires’ disease and evaporative cooling systems is still not fully understood. However, this study suggests that more specific and standardized maintenance guidelines, that have been scientifically established to be effective in controlling Legionella bacteria, are needed and then these guidelines must be properly implemented in order to help reduce further Legionnaires’ disease outbreaks associated with evaporative cooling systems.^
Resumo:
Introduction Gene expression is an important process whereby the genotype controls an individual cell’s phenotype. However, even genetically identical cells display a variety of phenotypes, which may be attributed to differences in their environment. Yet, even after controlling for these two factors, individual phenotypes still diverge due to noisy gene expression. Synthetic gene expression systems allow investigators to isolate, control, and measure the effects of noise on cell phenotypes. I used mathematical and computational methods to design, study, and predict the behavior of synthetic gene expression systems in S. cerevisiae, which were affected by noise. Methods I created probabilistic biochemical reaction models from known behaviors of the tetR and rtTA genes, gene products, and their gene architectures. I then simplified these models to account for essential behaviors of gene expression systems. Finally, I used these models to predict behaviors of modified gene expression systems, which were experimentally verified. Results Cell growth, which is often ignored when formulating chemical kinetics models, was essential for understanding gene expression behavior. Models incorporating growth effects were used to explain unexpected reductions in gene expression noise, design a set of gene expression systems with “linear” dose-responses, and quantify the speed with which cells explored their fitness landscapes due to noisy gene expression. Conclusions Models incorporating noisy gene expression and cell division were necessary to design, understand, and predict the behaviors of synthetic gene expression systems. The methods and models developed here will allow investigators to more efficiently design new gene expression systems, and infer gene expression properties of TetR based systems.