6 resultados para Viscous Dampers,Five Step Method,Equivalent Static Analysis Procedure,Yielding Frames,Passive Energy Dissipation Systems
em DigitalCommons@The Texas Medical Center
Resumo:
Any functionally important mutation is embedded in an evolutionary matrix of other mutations. Cladistic analysis, based on this, is a method of investigating gene effects using a haplotype phylogeny to define a set of tests which localize causal mutations to branches of the phylogeny. Previous implementations of cladistic analysis have not addressed the issue of analyzing data from related individuals, though in human studies, family data are usually needed to obtain unambiguous haplotypes. In this study, a method of cladistic analysis is described in which haplotype effects are parameterized in a linear model which accounts for familial correlations. The method was used to study the effect of apolipoprotein (Apo) B gene variation on total-, LDL-, and HDL-cholesterol, triglyceride, and Apo B levels in 121 French families. Five polymorphisms defined Apo B haplotypes: the signal peptide Insertion/deletion, Bsp 1286I, XbaI, MspI, and EcoRI. Eleven haplotypes were found, and a haplotype phylogeny was constructed and used to define a set of tests of haplotype effects on lipid and apo B levels.^ This new method of cladistic analysis, the parametric method, found significant effects for single haplotypes for all variables. For HDL-cholesterol, 3 clusters of evolutionarily-related haplotypes affecting levels were found. Haplotype effects accounted for about 10% of the genetic variance of triglyceride and HDL-cholesterol levels. The results of the parametric method were compared to those of a method of cladistic analysis based on permutational testing. The permutational method detected fewer haplotype effects, even when modified to account for correlations within families. Simulation studies exploring these differences found evidence of systematic errors in the permutational method due to the process by which haplotype groups were selected for testing.^ The applicability of cladistic analysis to human data was shown. The parametric method is suggested as an improvement over the permutational method. This study has identified candidate haplotypes for sequence comparisons in order to locate the functional mutations in the Apo B gene which may influence plasma lipid levels. ^
Resumo:
Developing a Model Interruption is a known human factor that contributes to errors and catastrophic events in healthcare as well as other high-risk industries. The landmark Institute of Medicine (IOM) report, To Err is Human, brought attention to the significance of preventable errors in medicine and suggested that interruptions could be a contributing factor. Previous studies of interruptions in healthcare did not offer a conceptual model by which to study interruptions. As a result of the serious consequences of interruptions investigated in other high-risk industries, there is a need to develop a model to describe, understand, explain, and predict interruptions and their consequences in healthcare. Therefore, the purpose of this study was to develop a model grounded in the literature and to use the model to describe and explain interruptions in healthcare. Specifically, this model would be used to describe and explain interruptions occurring in a Level One Trauma Center. A trauma center was chosen because this environment is characterized as intense, unpredictable, and interrupt-driven. The first step in developing the model began with a review of the literature which revealed that the concept interruption did not have a consistent definition in either the healthcare or non-healthcare literature. Walker and Avant’s method of concept analysis was used to clarify and define the concept. The analysis led to the identification of five defining attributes which include (1) a human experience, (2) an intrusion of a secondary, unplanned, and unexpected task, (3) discontinuity, (4) externally or internally initiated, and (5) situated within a context. However, before an interruption could commence, five conditions known as antecedents must occur. For an interruption to take place (1) an intent to interrupt is formed by the initiator, (2) a physical signal must pass a threshold test of detection by the recipient, (3) the sensory system of the recipient is stimulated to respond to the initiator, (4) an interruption task is presented to recipient, and (5) the interruption task is either accepted or rejected by v the recipient. An interruption was determined to be quantifiable by (1) the frequency of occurrence of an interruption, (2) the number of times the primary task has been suspended to perform an interrupting task, (3) the length of time the primary task has been suspended, and (4) the frequency of returning to the primary task or not returning to the primary task. As a result of the concept analysis, a definition of an interruption was derived from the literature. An interruption is defined as a break in the performance of a human activity initiated internal or external to the recipient and occurring within the context of a setting or location. This break results in the suspension of the initial task by initiating the performance of an unplanned task with the assumption that the initial task will be resumed. The definition is inclusive of all the defining attributes of an interruption. This is a standard definition that can be used by the healthcare industry. From the definition, a visual model of an interruption was developed. The model was used to describe and explain the interruptions recorded for an instrumental case study of physicians and registered nurses (RNs) working in a Level One Trauma Center. Five physicians were observed for a total of 29 hours, 31 minutes. Eight registered nurses were observed for a total of 40 hours 9 minutes. Observations were made on either the 0700–1500 or the 1500-2300 shift using the shadowing technique. Observations were recorded in the field note format. The field notes were analyzed by a hybrid method of categorizing activities and interruptions. The method was developed by using both a deductive a priori classification framework and by the inductive process utilizing line-byline coding and constant comparison as stated in Grounded Theory. The following categories were identified as relative to this study: Intended Recipient - the person to be interrupted Unintended Recipient - not the intended recipient of an interruption; i.e., receiving a phone call that was incorrectly dialed Indirect Recipient – the incidental recipient of an interruption; i.e., talking with another, thereby suspending the original activity Recipient Blocked – the intended recipient does not accept the interruption Recipient Delayed – the intended recipient postpones an interruption Self-interruption – a person, independent of another person, suspends one activity to perform another; i.e., while walking, stops abruptly and talks to another person Distraction – briefly disengaging from a task Organizational Design – the physical layout of the workspace that causes a disruption in workflow Artifacts Not Available – supplies and equipment that are not available in the workspace causing a disruption in workflow Initiator – a person who initiates an interruption Interruption by Organizational Design and Artifacts Not Available were identified as two new categories of interruption. These categories had not previously been cited in the literature. Analysis of the observations indicated that physicians were found to perform slightly fewer activities per hour when compared to RNs. This variance may be attributed to differing roles and responsibilities. Physicians were found to have more activities interrupted when compared to RNs. However, RNs experienced more interruptions per hour. Other people were determined to be the most commonly used medium through which to deliver an interruption. Additional mediums used to deliver an interruption vii included the telephone, pager, and one’s self. Both physicians and RNs were observed to resume an original interrupted activity more often than not. In most interruptions, both physicians and RNs performed only one or two interrupting activities before returning to the original interrupted activity. In conclusion the model was found to explain all interruptions observed during the study. However, the model will require an even more comprehensive study in order to establish its predictive value.
Resumo:
The considerable search for synergistic agents in cancer research is motivated by the therapeutic benefits achieved by combining anti-cancer agents. Synergistic agents make it possible to reduce dosage while maintaining or enhancing a desired effect. Other favorable outcomes of synergistic agents include reduction in toxicity and minimizing or delaying drug resistance. Dose-response assessment and drug-drug interaction analysis play an important part in the drug discovery process, however analysis are often poorly done. This dissertation is an effort to notably improve dose-response assessment and drug-drug interaction analysis. The most commonly used method in published analysis is the Median-Effect Principle/Combination Index method (Chou and Talalay, 1984). The Median-Effect Principle/Combination Index method leads to inefficiency by ignoring important sources of variation inherent in dose-response data and discarding data points that do not fit the Median-Effect Principle. Previous work has shown that the conventional method yields a high rate of false positives (Boik, Boik, Newman, 2008; Hennessey, Rosner, Bast, Chen, 2010) and, in some cases, low power to detect synergy. There is a great need for improving the current methodology. We developed a Bayesian framework for dose-response modeling and drug-drug interaction analysis. First, we developed a hierarchical meta-regression dose-response model that accounts for various sources of variation and uncertainty and allows one to incorporate knowledge from prior studies into the current analysis, thus offering a more efficient and reliable inference. Second, in the case that parametric dose-response models do not fit the data, we developed a practical and flexible nonparametric regression method for meta-analysis of independently repeated dose-response experiments. Third, and lastly, we developed a method, based on Loewe additivity that allows one to quantitatively assess interaction between two agents combined at a fixed dose ratio. The proposed method makes a comprehensive and honest account of uncertainty within drug interaction assessment. Extensive simulation studies show that the novel methodology improves the screening process of effective/synergistic agents and reduces the incidence of type I error. We consider an ovarian cancer cell line study that investigates the combined effect of DNA methylation inhibitors and histone deacetylation inhibitors in human ovarian cancer cell lines. The hypothesis is that the combination of DNA methylation inhibitors and histone deacetylation inhibitors will enhance antiproliferative activity in human ovarian cancer cell lines compared to treatment with each inhibitor alone. By applying the proposed Bayesian methodology, in vitro synergy was declared for DNA methylation inhibitor, 5-AZA-2'-deoxycytidine combined with one histone deacetylation inhibitor, suberoylanilide hydroxamic acid or trichostatin A in the cell lines HEY and SKOV3. This suggests potential new epigenetic therapies in cell growth inhibition of ovarian cancer cells.
VERIFICATION OF DNA PREDICTED PROTEIN SEQUENCES BY ENZYME HYDROLYSIS AND MASS SPECTROMETRIC ANALYSIS
Resumo:
The focus of this thesis lies in the development of a sensitive method for the analysis of protein primary structure which can be easily used to confirm the DNA sequence of a protein's gene and determine the modifications which are made after translation. This technique involves the use of dipeptidyl aminopeptidase (DAP) and dipeptidyl carboxypeptidase (DCP) to hydrolyze the protein and the mass spectrometric analysis of the dipeptide products.^ Dipeptidyl carboxypeptidase was purified from human lung tissue and characterized with respect to its proteolytic activity. The results showed that the enzyme has a relatively unrestricted specificity, making it useful for the analysis of the C-terminal of proteins. Most of the dipeptide products were identified using gas chromatography/mass spectrometry (GC/MS). In order to analyze the peptides not hydrolyzed by DCP and DAP, as well as the dipeptides not identified by GC/MS, a FAB ion source was installed on a quadrupole mass spectrometer and its performance evaluated with a variety of compounds.^ Using these techniques, the sequences of the N-terminal and C-terminal regions and seven fragments of bacteriophage P22 tail protein have been verified. All of the dipeptides identified in these analysis were in the same DNA reading frame, thus ruling out the possibility of a single base being inserted or deleted from the DNA sequence. The verification of small sequences throughout the protein sequence also indicates that no large portions of the protein have been removed after translation. ^
Resumo:
In Part One, the foundations of Bayesian inference are reviewed, and the technicalities of the Bayesian method are illustrated. Part Two applies the Bayesian meta-analysis program, the Confidence Profile Method (CPM), to clinical trial data and evaluates the merits of using Bayesian meta-analysis for overviews of clinical trials.^ The Bayesian method of meta-analysis produced similar results to the classical results because of the large sample size, along with the input of a non-preferential prior probability distribution. These results were anticipated through explanations in Part One of the mechanics of the Bayesian approach. ^
Resumo:
Traditional comparison of standardized mortality ratios (SMRs) can be misleading if the age-specific mortality ratios are not homogeneous. For this reason, a regression model has been developed which incorporates the mortality ratio as a function of age. This model is then applied to mortality data from an occupational cohort study. The nature of the occupational data necessitates the investigation of mortality ratios which increase with age. These occupational data are used primarily to illustrate and develop the statistical methodology.^ The age-specific mortality ratio (MR) for the covariates of interest can be written as MR(,ij...m) = ((mu)(,ij...m)/(theta)(,ij...m)) = r(.)exp (Z('')(,ij...m)(beta)) where (mu)(,ij...m) and (theta)(,ij...m) denote the force of mortality in the study and chosen standard populations in the ij...m('th) stratum, respectively, r is the intercept, Z(,ij...m) is the vector of covariables associated with the i('th) age interval, and (beta) is a vector of regression coefficients associated with these covariables. A Newton-Raphson iterative procedure has been used for determining the maximum likelihood estimates of the regression coefficients.^ This model provides a statistical method for a logical and easily interpretable explanation of an occupational cohort mortality experience. Since it gives a reasonable fit to the mortality data, it can also be concluded that the model is fairly realistic. The traditional statistical method for the analysis of occupational cohort mortality data is to present a summary index such as the SMR under the assumption of constant (homogeneous) age-specific mortality ratios. Since the mortality ratios for occupational groups usually increase with age, the homogeneity assumption of the age-specific mortality ratios is often untenable. The traditional method of comparing SMRs under the homogeneity assumption is a special case of this model, without age as a covariate.^ This model also provides a statistical technique to evaluate the relative risk between two SMRs or a dose-response relationship among several SMRs. The model presented has application in the medical, demographic and epidemiologic areas. The methods developed in this thesis are suitable for future analyses of mortality or morbidity data when the age-specific mortality/morbidity experience is a function of age or when there is an interaction effect between confounding variables needs to be evaluated. ^