3 resultados para Virtual Computer World

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: The Virtual Molecular Biology Lab is an innovative, computer-based educational program designed to teach advanced high school biology students how to create a transgenic mouse model in a simulated laboratory setting. It was created in an effort to combat the current decrease in adolescent enthusiasm for and academic achievement in science and science careers, especially in Hispanic students. Because studies have found that hands-on learning, particularly computer-based instruction, is effective in enhancing science achievement, the Virtual Lab is a potential tool for increasing the number of Hispanic students that choose to enter science fields. [See PDF for complete abstract]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To evaluate the HEADS UP Virtual Molecular Biology Lab, a computer-based simulated laboratory designed to teach advanced high school biology students how to create a mouse model. ^ Design. A randomized clinical control design of forty-four students from two science magnet high schools in Mercedes, Texas was utilized to assess knowledge and skills of molecular laboratory procedures, attitudes towards science and computers as a learning tool, and usability of the program. ^ Measurements. Data was collected using five paper-and-pencil formatted questionnaires and an internal "lab notebook." ^ Results. The Virtual Lab was found to significantly increase student knowledge over time (p<0.005) and with each use (p<0.001) as well as positively increase attitudes towards computers (p<0.001) and skills (p<0.005). No significant differences were seen in science attitude scores.^ Conclusion. These results provide evidence that the HEADS UP Virtual Molecular Biology Lab is a potentially effective educational tool for high school molecular biology education.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.