32 resultados para Viral suppression
em DigitalCommons@The Texas Medical Center
Resumo:
Mean corpuscular volume, which is an inexpensive and widely available measure to assess, increases in HIV infected individuals receiving zidovudine and stavudine raising the hypothesis that it could be used as a surrogate for adherence.^ The aim of this study was to examine the association between mean corpuscular volume and adherence to antiretroviral therapy among HIV infected children and adolescents aged 0–19 years in Uganda as well as the extent to which changes in mean corpuscular volume predict adherence as determined by virologic suppression.^ The investigator retrospectively reviewed and analyzed secondary data of 158 HIV infected children and adolescents aged 0–19 years who initiated antiretroviral therapy under an observational cohort at the Baylor College of Medicine Children's Foundation - Uganda. Viral suppression was used as the gold standard for monitoring adherence and defined as viral load of < 400 copies/ml at 24 and 48 weeks. ^ Patients were at least 48 weeks on therapy, age 0.2–18.4 years, 54.4% female, 82.3% on zidovudine based regimen, 92% WHO stage III at initiation of therapy, median pre therapy MCV 80.6 fl (70.3–98.3 fl), median CD4% 10.2% (0.3%–28.0%), and mean pre therapy viral load 407,712.9 ± 270,413.9 copies/ml. For both 24 and 48 weeks of antiretroviral therapy, patients with viral suppression had a greater mean percentage change in mean corpuscular volume (15.1% ± 8.4 vs. 11.1% ± 7.8 and 2.3% ± 13.2 vs. -2.7% ± 10.5 respectively). The mean percentage change in mean corpuscular volume was greater in the first 24 weeks of therapy for patients with and without viral suppression (15.1% ± 8.4 vs. 2.3% ± 13.2 and 11.1% ± 7.8 vs. -2.7% ± 10.5 respectively). In the multivariate logistic regression model, percentage change in mean corpuscular volume ≥ 20% was significantly associated with viral suppression (adjusted OR 4.0; CI 1.2–13.3; p value 0.02). The ability of percentage changes in MCV to correctly identify children and adolescents with viral suppression was higher at a cut off of ≥ 20% (90.7%; sensitivity, 31.7%) than at ≥ 9% (82.9%; sensitivity, 78.9%). Negative predictive value was lower at ≥ 20% change (25%; specificity, 84.8%) than at ≥ 9% change (33.3%; specificity, 39.4%).^ Mean corpuscular volume is a useful marker of adherence among children and adolescents with viral suppression. ^
Resumo:
Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^
Resumo:
Psoralen plus UVA (PUVA) is used as a very effective treatment modality for various diseases, including psoriasis and cutaneous T-cell lymphoma. PUVA-induced immune suppression and/or apoptosis are thought to be responsible for the therapeutic action. However, the molecular mechanisms by which PUVA acts are not well understood. We have previously identified platelet-activating factor (PAF), a potent phospholipid mediator, as a crucial substance triggering ultraviolet B radiation-induced immune suppression. In this study, we used PAF receptor knockout mice, a selective PAF receptor antagonist, a COX-2 inhibitor (presumably blocking downstream effects of PAF), and PAF-like molecules to test the role of PAF receptor binding in PUVA treatment. We found that activation of the PAF pathway is crucial for PUVA-induced immune suppression (as measured by suppression of delayed type hypersensitivity to Candida albicans) and that it plays a role in skin inflammation and apoptosis. Downstream of PAF, interleukin-10 was involved in PUVA-induced immune suppression but not inflammation. Better understanding of PUVA's mechanisms may offer the opportunity to dissect the therapeutic from the detrimental (ie, carcinogenic) effects and/or to develop new drugs (eg, using the PAF pathway) that act like PUVA but have fewer side effects.
Resumo:
Melanoma is known to be highly resistant to chemotherapy. Treatment with high dose IL-2 has shown significant clinical benefit in a minority of metastatic melanoma patients and has lead to long term survival in a few cases. However, this treatment is associated with excessive multiorgan toxicities, which severely limits its use. We hypothesize that one mechanism of effective IL-2 therapy is through the direct upregulation of IL-24 production in melanoma tumors and subsequent IL-24 mediated tumor growth suppression. Five melanoma cell lines were treated with high dose recombinant hIL-2 at 1000U/ml. Three of the cell lines (A375, WM1341, WM793) showed statistically significant increases in their levels of IL-24 protein when measured by Western blotting, while the remaining two lines (WM35, MeWo) remained negative for IL-24 message and protein. This increase in IL-24 was abolished by either preincubating with an anti-IL-2 antibody or by blocking the IL-2 receptor directly with antibodies against the receptor chains. We also demonstrated by ELISA that these three cell lines secrete IL-24 protein in higher amounts when stimulated with IL-2 than do untreated cells. These cells were found to contain IL-2R beta and gamma message by RT-PCR and also expressed higher levels of IL-24 when treated with IL-15, which shares the IL-2R beta chain. Thus we propose that IL-2 is signaling through IL-2R beta on some melanoma cells to upregulate IL-24 protein expression. To address the biological function of IL-2 in melanoma cells, five cell lines were treated with IL-2 and cell viability determined. Cell growth was found to be significantly decreased by day 4 in the IL-24 positive cell lines while no effect on growth was seen in WM35 or MeWo. Incubating the cells with anti-IL-24 antibody or transfecting with IL-24 siRNA effectively negated the growth suppression seen with IL-2. These data support our hypothesis that in addition to its immunotherapeutic effects, IL-2 also acts directly on some melanoma tumors and that the IL-24 and IL-2R beta status of a tumor may be useful in predicting patient response to high dose IL-2.
Resumo:
E2F1 is a multi-faceted protein that has roles in a number of important cellular processes including cell cycle regulation, apoptosis, proliferation, and the DNA damage response (DDR). Moreover, E2F1 has opposing roles in tumor development, acting as either a tumor suppressor or an oncogene depending on the context. In human cancer, E2F1 is often deregulated through aberrations in the Rb-p16INK4a-cyclin D1 pathway. In these studies we examined three mechanisms by which E2F1 might mediate its tumor suppressive properties: p21-induced senescence, miRNAs, and the DNA damage response. We found that E2F1 acts as a tumor suppressor in response to ras activation through a non-apoptotic mechanism requiring ARF and p53, but not p21. However, p21-loss inhibited two-stage chemical carcinogenesis in FVB mice. In response to E2F1 overexpression, we found that 22 miRNAs are differentially regulated in mouse epidermis, including let-7a, let-7c, and miR-301. Additionally, regulation of miR-301 involves binding of E2F1 to its promoter. Finally, our data indicate a role for E2F1 at sites of DNA damage requiring E2F1’s phosphorylation at serine 31 which may involve DNA repair. Further, this role in the DDR may affect tumor aggressiveness and multiplicity. In all, we have explored three mechanisms for E2F1-induced tumor suppression and identified E2F1’s role in the DNA damage response as a likely contributor to this phenomenon.
Resumo:
BACKGROUND: Arginine metabolism in tumor cell lines can be influenced by various cytokines, including recombinant human interferon-gamma (rIFN-gamma), a cytokine that shows promising clinical activity in epithelial ovarian cancer (EOC). METHODS: We examined EOC cell lines for the expression of arginase in an enzymatic assay and for transcripts of arginase I and II, inducible nitric oxide synthase (iNOS), and indoleamine 2,3-dioxygenase (IDO) by reverse transcription-polymerase chain reaction. The effects of rIFN-gamma on arginase activity and on tumor cell growth inhibition were determined by measuring [3H]thymidine uptake. RESULTS: Elevated arginase activity was detected in 5 of 8 tumor cell lines, and analysis at the transcriptional level showed that arginase II was involved but arginase I was not. rIFN-gamma reduced arginase activity in 3 EOC cell lines but increased activity in the 2008 cell line and its platinum-resistant subline, 2008.C13. iNOS transcripts were not detected in rIFN-gamma-treated or untreated cell lines. In contrast, IDO activity was induced or increased by rIFN-gamma. Suppression of arginase activity by rIFN-gamma in certain cell lines suggested that such inhibition might contribute to its antiproliferative effects. However, supplementation of the medium with polyamine pathway products did not interfere with the growth-inhibitory effects of rIFN-gamma EOC cells. CONCLUSIONS: Increased arginase activity, specifically identified with arginase II, is present in most of the tested EOC cell lines. rIFN-gamma inhibits or stimulates arginase activity in certain EOC cell lines, though the decrease in arginase activity does not appear to be associated with the in vitro antiproliferative activity of rIFN-gamma. Since cells within the stroma of EOC tissues could also contribute to arginine metabolism following treatment with rIFN-gamma or rIFN-gamma-inducers, it would be helpful to examine these effects in vivo.
Resumo:
Retinal degeneration causes vision impairment and blindness in humans. If one day we are to harness the potential of stem cell-based cell replacement therapies to treat these conditions, it is imperative that we better understand normal retina development. Currently, the genes and mechanisms that regulate the specification of the neuroretina during vertebrate eye development remain unknown. Here, we identify sine oculis-related homeobox 3 (Six3) as a crucial player in this process in mice. In Six3 conditional-mutant mouse embryos, specification of the neuroretina was abrogated, but that of the retinal pigmented epithelium was normal. Conditional deletion of Six3 did not affect the initial development of the optic vesicle but did arrest subsequent neuroretina specification. Ectopic rostral expansion of Wnt8b expression was the major response to Six3 deletion and the leading cause for the specific lack of neuroretina, as ectopic Wnt8b expression in transgenic embryos was sufficient to suppress neuroretina specification. Using chromatin immunoprecipitation assays, we identified Six3-responsive elements in the Wnt8b locus and demonstrated that Six3 directly repressed Wnt8b expression in vivo. Our findings provide a molecular framework to the program leading to neuroretina differentiation and may be relevant for the development of novel strategies aimed at characterizing and eventually treating different abnormalities in eye formation.
Resumo:
Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.
Resumo:
Cells infected with MuSVts110 express a viral RNA which contains an inherent conditional defect in RNA splicing. It has been shown previously that splicing of the MuSVts110 primary transcript is essential to morphological transformation of 6m2 cells in vitro. A growth temperature of 33$\sp\circ$C is permissive for viral RNA splicing,and, consequently, 6m2 cells appear morphologically transformed at this temperature. However, 6m2 cells appear phenotypically normal when incubated at 39$\sp\circ$C, the non-permissive temperature for viral RNA splicing.^ After a shift from 39$\sp\circ$C to 33$\sp\circ$C, the coordinate splicing of previously synthesized and newly transcribed MuSVts110 RNA was achieved. By S1 nuclease analysis of total RNA isolated at various times, 5$\sp\prime$ splice site cleavage of the MuSVts110 transcript appeared to occur 60 minutes after the shift to 33$\sp\circ$C, and 30 minutes prior to detectable exon ligation. In addition, consistent with the permissive temperatures and the kinetic timeframe of viral RNA splicing after a shift to 33$\sp\circ$C, four temperature sensitive blockades to primer extension were identified 26-75 bases upstream of the 3$\sp\prime$ splice site. These blockades likely reflect four branchpoint sequences utilized in the formation of MuSVts110 lariat splicing-intermediates.^ The 54-5A4 cell line is a spontaneous revertant of 6m2 cells and appears transformed at all growth temperatures. Primer extension sequence analysis has shown that a five base deletion occurred at the 3$\sp\prime$ splice site in MuSVts110 RNA allowing the expression of a viral transforming protein in 54-5A4 in the absence of RNA splicing, whereas in the parental 6m2 cell line, a splicing event is necessary to generate a similar transforming protein. As a consequence of this deletion, splicing cannot occur and the formation of the four MuSVts110 branched-intermediates were not observed at any temperature in 54-5A4 cells. However, 5$\sp\prime$ splice site cleavage was still detected at 33$\sp\circ$C.^ Finally, we have investigated the role of the 1488 bp deletion which occurred in the generation of MuSVts110 in the activation of temperature sensitive viral RNA splicing. This deletion appears solely responsible for splice site activation. Whether intron size is the crucial factor in MuSVts110 RNA splicing or whether inhibitory sequences were removed by the deletion is currently unknown. (Abstract shortened with permission of author.) ^
Resumo:
The role of tumor suppressor function in the multistep process of carcinogenesis was studied in the human teratocarcinoma cell line PA-1. Early passage PA-1 cells ($<$P100) are preneoplastic while late passage ($>$P100) PA-1 cells are spontaneously transformed. Previous work demonstrated a causal role for the N-ras oncogene in the neoplastic transformation of this cell line and the gene was cloned. A clonal cell line established at passage 40 has been shown to suppress the neoplastic transformation potential of the PA-1 N-ras oncogene in gene transfer experiments. This phenotype has been termed SRT+ for suppression of ras transformation. A clonal cell line established at passage 63 is neoplastically transformed by the N-ras in similar gene transfer experiments and is regarded as srt$-$. Somatic cell hybrids were formed between the SRT+ cell and two different N-ras transformed srt$-$ cells. The results indicate that five of the seven independent hybrid clones, and all 14 subclones, failed to form tumors in the nude mouse tumor assay. Chromosomal analysis of rare neoplastic segregants which arose from suppressed hybrid populations demonstrate that the general loss of chromosomes correlates with the reemergence of neoplastic transformation. Karyotype analyses demonstrate a statistically correlative loss of chromosomes 1, 4, 19, and to a lesser extent 11, 14, and 16. DNA hybridization analysis demonstrates a single copy of the intact N-ras oncogene in parental cells, suppressed hybrids, and neoplastically transformed hybrids. These results indicate that functional ras transformation suppression is a trans-dominant trait which may be controlled by sequences residing on particular chromosomes in the human genome. Furthermore, the suppression of ras transformation results from a unique step in the multistep process of carcinogenesis that is different from the induction of immortality. Thus, the neoplastic process of the PA-1 cell line involves at least three steps: (1) induction of immortality, (2) activation of the N-ras oncogene, and (3) loss of tumor suppressor function. ^
Resumo:
Actinobacillus actinomycetemcomitans (Aa) is a gram-negative coccobacillus implicated as a major pathogen in juvenile periodontitis. The immunosuppressive activity of a sonic extract (designated 100SN) derived from Aa was investigated. 100SN suppressed spontaneous proliferation as well as proliferative response to the mitogens, PHA and PWM, of human peripheral blood mononuclear cells (PBMC). 100SN-induced suppression of PHA-stimulated proliferation was heat-sensitive, inactivated by pronase and trypsin, dose-dependent and non-cytotoxic. There were no significant changes in the CD4$\sp+$ or CD8$\sp+$ subsets of PBMC after 7-day incubation with 100SN. There was a trend toward increased levels of the CD4$\sp+$CD45R$\sp{\rm hi}$CDw29$\sp{\rm lo}$ (naive cells, associated with suppressor-inducer activity) and CD4$\sp+$CDw29$\sp{\rm hi}$CD45R$\sp{\rm lo}$ (memory cells, associated with helper-inducer activity) subsets. The target of 100SN appeared to be the non-adherent cells and suppression by 100SN could not be reversed by indomethacin (IDM), the cyclo-oxygenase inhibitor of prostaglandin (PG) synthesis. The mechanism of 100SN-induced suppression was studied in terms of inhibition involving IL-2-regulated T cell proliferation and the results point to the possibility that suppression occurred subsequent to IL-2 receptor binding.^ The suppressive activity observed could occur through multiple mechanisms including cell-cell; contact or release of soluble factors. Supernatants derived from 7-day cultures of PBMC and 100SN (designated CSN-A) were able to suppress proliferative response of PBMC to PHA without affecting cell viability. Analysis of CSN-A showed that it contained PGE2 and soluble IL-2 receptors. Suppression by CSN-A could be partially overcome by either IDM or exogenous IL-2. Significant suppression was also maintained when both IDM and exogenous IL-2 were added at the same time. These findings suggest that PGE2 and soluble IL-2 receptors contribute to the suppression observed but other suppressive cytokine(s) may be involved. Collectively, the data indicate that a factor derived from oral bacteria associated with juvenile periodontitis have profound effects on cellular immune responses, and that these effects may be partially mediated by secondary factors produced by the host in response to the bacteria. ^
Resumo:
Most tissue-invasive parasitic helminths prime for type 1 hypersensitivity or anaphylaxis during some phase of their life cycles. A prototype in this regard is the nematode Trichinella spiralis. Blood protozoa capable of tissue invasion, such as Trypanosoma brucei, might also be expected to prime for the expression of anaphylaxis. However, this response is usually absent in protozoal infections. The hypothesis tested was that failure of hosts infected with T.brucei to express anaphylaxis is related to this parasite's ability to selectively down-regulate immunoglobulin E (IgE) production, and not to an innate lack of allergenicity on the part of T.brucei-derived antigens. This hypothesis was tested by studying in the intestine of rats, antigen-induced Cl$\sp-$ secretion, which results from a local anaphylactic response mediated by IgE and mucosal mast cells. The Cl$\sp-$ secretory response can be primed either by infection with T.spiralis or by the parenteral administration of antigen. Anaphylaxis-induced Cl$\sp-$ secretion is expressed in vitro, and can be quantified electrophysiologically, as a change in transmural short-circuit current when sensitized intestine is mounted in Ussing chambers and challenged with the sensitizing antigen.^ Rats injected parenterally with trypanosome antigen elicited intestinal anaphylaxis in response to antigenic challenge. In contrast, the intestine of rats infected with T.brucei failed to respond to challenge with trypanosome antigen. Infection with T.brucei also suppressed antigen-induced Cl$\sp-$ secretion in rats sensitized and challenged with various antigens, including T.spiralis antigen. However, T.brucei infection did not inhibit the anaphylactic response in rats concomitantly infected with T.spiralis. Relative to the anaphylactic mediators, T.brucei infection blocked production of IgE in rats parenterally injected with antigen but not in T.spiralis-infected hosts. Also, the mucosal mastocytosis normally associated with trichinosis was unaffected by the trypanosome infection. These results support the conclusion that the failure to express anaphylaxis-mediated Cl$\sp-$ secretion in T.brucei infected rats, is due to this protozoan's ability to inhibit IgE production and not to the lack of allergenicity of trypanosome antigens. ^
Resumo:
The origin and structure of P55$\sp{\rm gag},$ a gag encoded polyprotein lacking the nucleocapsid protein, NCp10, have been explored. Evidence shows that P55$\sp{\rm gag}$ is formed by non-viral proteolytic cleavage of the Moloney murine leukemia virus (MoMuLV)gag precursor protein, Pr65$\sp{\rm gag}.$ P55$\sp{\rm gag}$ is produced in cells infected by a viral protease deletion mutant and by a recombinant murine sarcoma virus known to lack the protease gene, implying that a cellular protease is responsible for the cleavage. Structural and immunological studies show that the protein cleavage site is upstream of the CAp30-NCp10 viral proteolytic junction, implying that P55$\sp{\rm gag}$ lacks the carboxy-terminal residues of CAp30. During the course of studying P55$\sp{\rm gag},$ another protein was discovered, which I named nucleocapsid-related protein(NCRP). NCRP possesses the portion of CAp30 that is lacking in P55$\sp{\rm gag}.$ NCRP possesses antigenic epitopes present in CAp30 and NCp10. NCRP was observed in virus lysates and in nuclear lysates of MoMuLV infected cells; it was not detected in the cytoplasmic fractions of MoMuLV infected cells. Our results indicated that NCRP originates from Pr65$\sp{\rm gag},$ resulting from the same cellular proteolytic cleavage event that produces the viral cellular protein P55$\sp{\rm gag}.$ P55$\sp{\rm gag}$- and NCRP-like proteins also were observed in AKV murine leukemia virus (AKV MuLV) and feline leukemia virus (FeLV) infected cells and in their respective virus particles. The site of cleavage that yields P55$\sp{\rm gag}$ and NCRP is within the carboxy terminus of CAp30, likely within a motif highly conserved among mammalian type C retroviruses. This new motif, called the capsid conserved motif (CCM), overlaps a region containing both a possible bipartite nuclear targeting sequence and a region homologous with the U1 small nuclear ribonucleoprotein 70-kD protein. This domain, when intact, may act as a nuclear targeting sequence for the gag precursor proteins Pr65$\sp{\rm gag}$ and CAp30. Nuclei of cells infected with MoMuLV were examined for the presence of gag proteins. Both Pr65$\sp{\rm gag}$ and CAp30 were detected in the nuclear fraction of MoMuLV, AKV MuLV and FeLV infected cells. P55$\sp{\rm gag}$ was never detected in the nucleus of MoMuLV, AKV MuLV and FeLV infected cells or in their respective virus particles. I propose that NCRP may be involved in sequestering viral genomic RNA for the purposes of encapsidation and intracellular viral genomic RNA dimerization. ^
Resumo:
The initial step in coronavirus-mouse hepatitis virus (MHV) replication is the synthesis of negative strand RNA from a positive strand genomic RNA template. Our approach to studying MHV RNA replication is to identify the cis-acting signals for RNA synthesis and the protein(s) which recognizes these signals at the 3$\sp\prime$ end of genomic RNA of MHV. To determine whether host cellular and/or virus-specific proteins interact with the 3$\sp\prime$ end of the coronavirus genome, an RNase T$\sb1$ protection/gel mobility shift electrophoresis assay was used to examine cytoplasmic extracts from either mock- or MHV-JHM-infected 17Cl-1 murine cells for the ability to form complexes with defined regions of the genomic RNA. A conserved 11 nucleotide sequence UGAAUGAAGUU at nucleotide positions 36 to 26 from the 3$\sp\prime$ end of genomic RNA was identified to be responsible for the specific binding of host proteins, by using a series of RNA probes with deletions and mutations in this region. The RNA probe containing the 11 nucleotide sequence bound approximately four host cellular proteins with a highly labeled 120 kDa and three minor species with sizes of 103, 81 and 55 kDa, assayed by UV-induced covalent cross-linking. Mutation of the 11 nucleotide motif strongly inhibited cellular protein binding, and decreased the amount of the 103 and 81 kDa proteins in the complex to undetectable levels and strongly reduced the binding of the 120 kDa protein. Less extensive mutations within this 11 nucleotide motif resulted in variable decreases in RNA-protein complex formation depending on each probe tested. The RNA-protein complexes observed with cytoplasmic extracts from MHV-JHM-infected cells in both RNase protection/gel mobility shift and UV cross-linking assays were indistinguishable to those observed with extracts from uninfected cells.^ To investigate the possible role of this 3$\sp\prime$ protein binding element in viral RNA replication in vivo, defective interfering RNA molecules with complete or partial mutations of the 11 nucleotide conserved sequence were transcribed in vitro, transfected to host 17Cl-1 cells in the presence of helper virus MHV-JHM and analyzed by agarose gel electrophoresis, competitive RT-PCR and direct sequencing of the RT-PCR products. Both negative strand synthesis and positive strand replication of DI RNA were affected by mutation that disrupts RNA-protein complex formation, even though the 11 mutated nucleotides were converted to wild type sequence, presumably by recombination with helper virus. Kinetic analysis indicated that recombination between DI RNA and helper virus occurred 5.5 to 7.5 hours post infection when replication of positive strand DI RNA was barely observed. Replication of positive strand DI RNAs carrying partial mutations within the 11 nucleotide motif was dependent upon recombination events after transfection. Replication was strongly inhibited when reversion to wild type sequence did not occur, and after recombination, reached similar levels as wild type DI RNA. A DI RNA with mutation upstream of the protein binding motif replicated as efficiently as wild type without undergoing recombination. Thus the conserved 11 nucleotide host protein binding motif appears to play an important role in viral RNA replication. ^
Resumo:
To initiate our clinical trial for chemotherapy protection, I established the retroviral vector system for human MDR1 cDNA gene transfer. The human MDR1 cDNA continued to be expressed in the transduced bone marrow cells after four cohorts of serial transplants, 17 months after the initial transduction and transplant. In addition, we used this retroviral vector pVMDR1 to transduce human bone marrow and peripheral blood CD34$\sp+$ cells on stromal monolayer in the presence of hematopoietic growth factors. These data suggest that the retroviral vector pVMDR1 could modify hematopoietic precursor cells with a capacity for long-term self renewal. Thus, it may be possible to use the MDR1 retroviruses to confer chemotherapeutic protection on human normal hematopoietic precursor cells of ovarian and breast cancer patients in whom high doses of MDR drugs may be required to control the diseases.^ Another promising vector system is recombinant adeno-associated virus (rAAV) vector. An impediment to use rAAV vectors is that production of rAAV vectors for clinical use is extremely cumbersome and labor intensive. First I set up the rAAV vector system in our laboratory and then, I focused on studies related to the production of rAAV vectors for clinical use. By using a self-inactivating retroviral vector carrying a selection marker under the control of the CMV immediate early promoter and an AAV genome with the deletion of both ITRs, I have developed either a transient or a stable method to produce rAAV vectors. These methods involve infection only and can generate high-titer rAAV vectors (up to 2 x 10$\sp5$ cfu/ml of CVL) with much less work.^ Although recombinant adenoviral vectors hardly infect early hematopoietic precursor cells lacking $\alpha\sb v\beta\sb5$ or $\alpha\sb v\beta\sb3$ integrin on their surface, but efficiently infect other cells, we can use these properties of adenoviral vectors for bone marrow purging as well as for development of new viral vectors such as pseudotyped retroviral vectors and rAAV vectors. Replacement of self-inactivating retroviral vectors by recombinant adenoviral vectors will facilitate the above strategies for production of new viral vectors. In order to accomplish these goals, I developed a new method which is much more efficient than the current methods to construct adenoviral vectors. This method involves a cosmid vector system which is utilized to construct the full-length recombinant adenoviral vectors in vitro.^ First, I developed an efficient and flexible method for in vitro construction of the full-length recombinant adenoviral vectors in the cosmid vector system by use of a three-DNA fragment ligation. Then, this system was improved by use of a two-DNA fragment ligation. The cloning capacity of recombinant adenoviral vectors constructed by this method to develop recombinant adenoviral vectors depends on the efficiency of transfection only. No homologous recombination is required for development of infectious adenoviral vectors. Thus, the efficiency of generating the recombinant adenoviral vectors by the cosmid method reported here was much higher than that by the in vitro direct ligation method or the in vivo homologous recombination method reported before. This method of the in vitro construction of recombinant adenoviral vectors in the cosmid vector system may facilitate the development of adenoviral vector for human gene therapy. (Abstract shortened by UMI.) ^