15 resultados para Ventricular Function, Left

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Obesity is a systemic disorder associated with an increase in left ventricular mass and premature death and disability from cardiovascular disease. Although bariatric surgery reverses many of the hormonal and hemodynamic derangements, the long-term collective effects on body composition and left ventricular mass have not been considered before. We hypothesized that the decrease in fat mass and lean mass after weight loss surgery is associated with a decrease in left ventricular mass. METHODS: Fifteen severely obese women (mean body mass index [BMI]: 46.7+/-1.7 kg/m(2)) with medically controlled hypertension underwent bariatric surgery. Left ventricular mass and plasma markers of systemic metabolism, together with body mass index (BMI), waist and hip circumferences, body composition (fat mass and lean mass), and resting energy expenditure were measured at 0, 3, 9, 12, and 24 months. RESULTS: Left ventricular mass continued to decrease linearly over the entire period of observation, while rates of weight loss, loss of lean mass, loss of fat mass, and resting energy expenditure all plateaued at 9 [corrected] months (P <.001 for all). Parameters of systemic metabolism normalized by 9 months, and showed no further change at 24 months after surgery. CONCLUSIONS: Even though parameters of obesity, including BMI and body composition, plateau, the benefits of bariatric surgery on systemic metabolism and left ventricular mass are sustained. We propose that the progressive decrease of left ventricular mass after weight loss surgery is regulated by neurohumoral factors, and may contribute to improved long-term survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous studies, we found that the improved contractile ability of cardiac myocytes from patients who have had left ventricular assist device (LVAD) support was due to a number of beneficial changes, most notably in calcium handling (increased sarcoplasmic reticulum calcium binding and uptake), improved integrity of cell membranes due to phospholipid reconstruction (reduced lysophospholipid content), and an upregulation of adrenoreceptors (increased adrenoreceptor numbers). However, in the case presented here, there was no increase in adrenoreceptor number, which is something that we usually find in core tissue at the time of LVAD removal or organ transplantation; also, there was no homogeneous postassist device receptor distribution. However, the patient was well maintained for 10 months following LVAD implantation, until a donor organ was available, regardless of the lack of adrenoreceptor improvement. We conclude from these studies that cardiac recovery is the result of the initiation of multiple repair mechanisms, and that the lack of expected changes, in this case increased adrenoreceptors, is not always an accurate indicator of anticipated outcome. We suggest that interventions and strategies have to consider multiple, beneficial changes due to unloading and target a number of biochemical and structural areas to produce improvement, even if not all of these improvements occur.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the clinical success of left ventricular assist devices (LVADs) used for short term "bridge to transplant" and the limited availability of donor organs, heart assist devices are being considered for long term implantation as an alternative to heart transplantation. In an effort to improve biocompatibility, a nonthrombogenic cellular lining was developed from genetically engineered smooth muscle cells (GE-SMC) for the Thermocardiosystems Heartmate$\sp{\rm TM}$ LVAD. SMCs have been transduced with the genes for endothelial nitric oxide synthase (NOS III) and GTP cyclohydrolase (GTPCH) with subsequent stable expression of the NOS III protein via an Epstein Barr based DNA expression vector. Transduced SMCs produce nitric oxide at concentrations that reduce platelet deposition and smooth muscle cell proliferation when tested in vitro. In addition, the adhesive capabilities of GE-SMC linings were also examined, and optimized in physical environments mimicking typical in vivo LVAD operation. Preliminary investigations examining cell adhesion during constant shear stress exposure demonstrated an acute phase of cell loss corresponding to cytoskeletal F-actin rearrangement. Subsequently, an in vitro circulatory loop was designed to expose cell lined LVADs to in vivo operating conditions. Cumulative cell loss from cell lined LVADs was less than 10% after 24 hours of flow. Using a protocol for "preconditioning" the cell lining within the mock circulatory loop, the first implantation of an LVAD containing a genetically engineered SMC lining was successfully implemented in a bovine model. Results from this 24 hour study indicate that the flow-conditioned cellular lining remained intact with no evidence of thromboembolization and only minimal changes in coagulation studies. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Left ventricular mass (LVM) is a strong predictor of cardiovascular disease (CVD) in adults. However, normal growth of LVM in healthy children is not well understood, and previous results on independent effects of body size and body fatness on LVM have been inconsistent. The purpose of this study was (1) to establish the normal growth curve of LVM from age 8 to age 18, and evaluate the determinants of change in LVM with age, and (2) to assess the independent effects of body size and body fatness on LVM.^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. A synthetic cohort with continuous observations from age 8 to 18 years was constructed. A total of 4608 LVM measurements was made from M-mode echocardiography. The multilevel linear model was used for analysis.^ Sex-specific trajectories of normal growth of LVM from age 8 to 18 was displayed. On average, LVM was 15 g higher in males than females. Average LVM increased linearly in males from 78 g at age 8 to 145 g at age 18. For females, the trajectory was curvilinear, nearly constant after age 14. No significant racial differences were found. After adjustment for the effects of body size and body fatness, average LVM decreased slightly from age 8 to 18, and sex differences in changes of LVM remained constant.^ The impact of body size on LVM was examined by adding to a basic LVM-sex-age model one of 9 body size indicators. The impact of body fatness was tested by further introducing into each of the 9 LVM models (with one or another of the body size indicators) one of 4 body fatness indicators, yielding 36 models with different body size and body fatness combinations. The results indicated that effects of body size on LVM can be distinguished between fat-free body mass and fat body mass, both being independent, positive predictors. The former is the stronger determinant. When a non-fat-free body size indicator is used as predictor, the estimated residual effect of body fatness on LVM becomes negative. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hypertension in adults is defined by risk for cardiovascular morbidity and mortality, but in children, hypertension is defined using population norms. The diagnosis of hypertension in children and adolescents requires only casual blood pressure measurements, but the use of ambulatory blood pressure monitoring to further evaluate patients with elevated blood pressure has been recommended in the Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents. The aim of this study is to assess the association between stage of hypertension (using both casual and 24 hour ambulatory blood pressure measurements) and target organ damage defined by left ventricular hypertrophy (LVH) in a sample of children and adolescents in Houston, TX. A retrospective analysis was performed on the primary de-identified data from the combination of participants in two, IRB approved, cross-sectional studies. The studies collected basic demographic data, height, weight, casual blood pressures, ambulatory blood pressures, and left ventricular measurements by echocardiography on children age 8 to 18 years old. Hypertension was defined and staged using the criteria for ambulatory blood pressure reported by Lurbe et al. [1] with some modification. Left ventricular hypertrophy was defined using left ventricular mass index (LVMI) criteria specific for children and adults. The pediatric criterion was LVMI2.7 > 95th percentile for gender and the adult criterion was LVMI2.7 > 51g/m2.7. Participants from the original studies were included in this analysis if they had complete demographic information, anthropometric measures, casual blood pressures, ambulatory blood pressures, and echocardiography data. There were 241 children and adolescents included: 19.1% were normotensive, 17.0% had white coat hypertension, 11.6% had masked hypertension, and 52.4% had confirmed hypertension. Of those with hypertension, 22.4% had stage 1 hypertension, 5.8% had stage 2 hypertension, and 24.1% had stage 3 hypertension. Participants with confirmed hypertension were more likely to have LVH by pediatric criterion than those who were normotensive [OR 2.19, 95% CI (1.04–4.63)]; LVH defined by adult criterion did not differ significantly in normotensives compared with hypertensives [OR 2.08, 95% CI (0.58–7.52)]. However, there was a significant trend in the increased prevalence of LVH across the six blood pressure categories for LVH defined by both pediatric and adult criteria (p < 0.001 and p = 0.02, respectively). Additionally, the mean LVM indexed by height 2.7 had a significantly increased trend across blood pressure stages from normal to stage 3 hypertension (p < 0.02). Pediatric hypertension is defined using population norms, and although children with mild hypertension are not at increased odds of having target organ damage defined by LVH, those with severe hypertension are more likely to have LVH. Staging hypertension by ambulatory blood pressure further describes an individual's risk for LVH target organ damage. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chronic β-blocker treatment improves survival and left ventricular ejection fraction (LVEF) in patients with systolic heart failure (HF). Data on whether the improvement in LVEF after β-blocker therapy is sustained for a long term or whether there is a loss in LVEF after an initial gain is not known. Our study sought to determine the prevalence and prognostic role of secondary decline in LVEF in chronic systolic HF patients on β-blocker therapy and characterize these patients. Retrospective chart review of HF hospitalizations fulfilling Framingham Criteria was performed at the MEDVAMC between April 2000 and June 2006. Follow up vital status and recurrent hospitalizations were ascertained until May 2010. Three groups of patients were identified based on LVEF response to beta blockers; group A with secondary decline in LVEF following an initial increase, group B with progressive increase in LVEF and group C with progressive decline in LVEF. Covariate adjusted Cox proportional hazard models were used to examine differences in heart failure re-hospitalizations and all cause mortality between the groups. Twenty five percent (n=27) of patients had a secondary decline in LVEF following an initial gain. The baseline, peak and final LVEF in this group were 27.6±12%, 40.1±14% and 27.4±13% respectively. The mean nadir LVEF after decline was 27.4±13% and this decline occurred at a mean interval of 2.8±1.9 years from the day of beta blocker initiation. These patients were older, more likely to be whites, had advanced heart failure (NYHA class III/IV) more due to a non ischemic etiology compared to groups B & C. They were also more likely to be treated with metoprolol (p=0.03) compared to the other two groups. No significant differences were observed in combined risk of all cause mortality and HF re-hospitalization [hazard ratio 0.80, 95% CI 0.47 to 1.38, p=0.42]. No significant difference was observed in survival estimates between the groups. In conclusion, a late decline in LVEF does occur in a significant proportion of heart failure patients treated with beta blockers, more so in patients treated with metoprolol.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Left ventricular outflow tract (LVOT) defects are an important group of congenital heart defects (CHDs) because of their associated mortality and long-term complications. LVOT defects include aortic valve stenosis (AVS), coarctation of aorta (CoA), and hypoplastic left heart syndrome (HLHS). Despite their clinical significance, their etiology is not completely understood. Even though the individual component phenotypes (AVS, CoA, and HLHS) may have different etiologies, they are often "lumped" together in epidemiological studies. Though "lumping" of component phenotypes may improve the power to detect associations, it may also lead to ambiguous findings if these defects are etiologically distinct. This is due to potential for effect heterogeneity across component phenotypes. ^ This study had two aims: (1) to identify the association between various risk factors and both the component (i.e., split) and composite (i.e., lumped) LVOT phenotypes, and (2) to assess the effect heterogeneity of risk factors across component phenotypes of LVOT defects. ^ This study was a secondary data analysis. Primary data were obtained from the Texas Birth Defect Registry (TBDR). TBDR uses an active surveillance method to ascertain birth defects in Texas. All cases of non complex LVOT defects which met our inclusion criteria during the period of 2002–2008 were included in the study. The comparison groups included all unaffected live births for the same period (2002–2008). Data from vital statistics were used to evaluate associations. Statistical associations between selected risk factors and LVOT defects was determined by calculating crude and adjusted prevalence ratio using Poisson regression analysis. Effect heterogeneity was evaluated using polytomous logistic regression. ^ There were a total of 2,353 cases of LVOT defects among 2,730,035 live births during the study period. There were a total of 1,311 definite cases of non-complex LVOT defects for analysis after excluding "complex" cardiac cases and cases associated with syndromes (n=168). Among infant characteristics, males were at a significantly higher risk of developing LVOT defects compared to females. Among maternal characteristics, significant associations were seen with maternal age > 40 years (compared to maternal age 20–24 years) and maternal residence in Texas-Mexico border (compared to non-border residence). Among birth characteristics, significant associations were seen with preterm birth and small for gestation age LVOT defects. ^ When evaluating effect heterogeneity, the following variables had significantly different effects among the component LVOT defect phenotypes: infant sex, plurality, maternal age, maternal race/ethnicity, and Texas-Mexico border residence. ^ This study found significant associations between various demographic factors and LVOT defects. While many findings from this study were consistent with results from previous studies, we also identified new factors associated with LVOT defects. Additionally, this study was the first to assess effect heterogeneity across LVOT defect component phenotypes. These findings contribute to a growing body of literature on characteristics associated with LVOT defects. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heart is a remarkable organ. In order to maintain its function, it remodels in response to a variety of environmental stresses, including pressure overload, volume overload, mechanical or pharmacological unloading and hormonal or metabolic disturbances. All these responses are linked to the inherent capacity of the heart to rebuild itself. Particularly, cardiac pressure overload activates signaling pathways of both protein synthesis and degradation. While much is known about regulators of protein synthesis, little is known about regulators of protein degradation in hypertrophy. The ubiquitin-proteasome system (UPS) selectively degrades unused and abnormal intracellular proteins. I speculated that the UPS may play an important role in both qualitative and quantitative changes in the composition of heart muscle during hypertrophic remodeling. My study hypothesized that cardiac remodeling in response to hypertrophic stimuli is a dynamic process that requires activation of highly regulated mechanisms of protein degradation as much as it requires protein synthesis. My first aim was to adopt a model of left ventricular hypertrophy and determine its gene expression and structural changes. Male Sprague-Dawley rats were submitted to ascending aortic banding and sacrificed at 7 and 14 days after surgery. Sham operated animals served as controls. Effective aortic banding was confirmed by hemodynamic assessment by Doppler flow measurements in vivo. Banded rats showed a four-fold increase in peak stenotic jet velocities. Histomorphometric analysis revealed a significant increase in myocyte size as well as fibrosis in the banded animals. Transcript analysis showed that banded animals had reverted to the fetal gene program. My second aim was to assess if the UPS is increased and transcriptionally regulated in hypertrophic left ventricular remodeling. Protein extracts from the left ventricles of the banded and control animals were used to perform an in vitro peptidase assay to assess the overall catalytic activity of the UPS. The results showed no difference between hypertrophied and control animals. Transcript analysis revealed decreases in transcript levels of candidate UPS genes in the hypertrophied hearts at 7 days post-banding but not at 14 days. However, protein expression analysis showed no difference at either time point compared to controls. These findings indicate that elements of the UPS are downregulated in the early phase of hypertrophic remodeling and normalizes in a later phase. The results provide evidence in support of a dynamic transcriptional regulation of a major pathway of intracellular protein degradation in the heart. The discrepancy between transcript levels on the one hand and protein levels on the other hand supports post-transcriptional regulation of the UPS pathway in the hypertrophied heart. The exact mechanisms and the functional consequences remain to be elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Renal failure after thoracoabdominal aortic repair is a significant clinical problem. Distal aortic perfusion for organ and spinal cord protection requires cannulation of the left femoral artery. In 2006, we reported the finding that direct cannulation led to leg ischemia in some patients and was associated with increased renal failure. After this finding, we modified our perfusion technique to eliminate leg ischemia from cannulation. In this article, we present the effects of this change on postoperative renal function. METHODS: Between February 1991 and July 2008, we repaired 1464 thoracoabdominal aortic aneurysms. Distal aortic perfusion was used in 1088, and these were studied. Median patient age was 68 years, and 378 (35%) were women. In September 2006, we began to adopt a sidearm femoral cannulation technique that provides distal aortic perfusion while maintaining downstream flow to the leg. This was used in 167 patients (15%). We measured the joint effects of preoperative glomerular filtration rate (GFR) and cannulation technique on the highest postoperative creatinine level, postoperative renal failure, and death. Analysis was by multiple linear or logistic regression with interaction. RESULTS: The preoperative GFR was the strongest predictor of postoperative renal dysfunction and death. No significant main effects of sidearm cannulation were noted. For peak creatinine level and postoperative renal failure, however, strong interactions between preoperative GFR and sidearm cannulation were present, resulting in reductions of postoperative renal complications of 15% to 20% when GFR was <60 mL>/min/1.73 m(2). For normal GFR, the effect was negated or even reversed at very high levels of GFR. Mortality, although not significantly affected by sidearm cannulation, showed a similar trend to the renal outcomes. CONCLUSION: Use of sidearm cannulation is associated with a clinically important and highly statistically significant reduction in postoperative renal complications in patients with a low GFR. Reduced renal effect of skeletal muscle ischemia is the proposed mechanism. Effects among patients with good preoperative renal function are less clear. A randomized trial is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two distinct classes of neurons have been examined in the nervous system of Aplysia. The membrane properties of these neurons are regulated by intracellular signalling molecules in both a short-term and a long-term fashion.^ The role of the phosphatidylinositol cycle in the control of neuronal properties was studied in a class of bursting pacemaker cells, the left upper-quadrant bursting neurons (cells L2, L3, L4, and L6) of the abdominal ganglion of Aplysia. These cells display a regular burst-firing pattern that is controlled by cyclic changes of intracellular Ca$\sp{2+}$ that occur during the bursting rhythm. The characteristic bursting pattern of these neurons occurs within a range of membrane potentials ($-35$ to $-50$ mV) called the pacemaker range. Intracellular pressure injection of inositol 1,4,5-trisphosphate (IP$\sb3$) altered the bursting rhythm of the bursting cells. Injection of IP$\sb3$ induced a brief depolarization that was followed by a long-lasting (2-15 min) hyperpolarization. When cells were voltage-clamped at potentials within the pacemaker range, injection of IP$\sb3$ generally induced a biphasic response that had a total duration of 2-15 min. An initial inward shift in holding current (I$\sb{\rm in}$), which lasted 5-120 sec, was followed by a slow outward shift in holding current (I$\sb{\rm out}$). At membrane potentials more negative than $-40$ mV, I$\sb{\rm in}$ was associated with a small and relatively voltage-independent increase in membrane conductance. I$\sb{\rm in}$ was not blocked by bath application of TTX or Co$\sp{2+}$. Although I$\sb{\rm in}$ was activated by injection of IP$\sb3$, it was not blocked by iontophoretic injection of ethyleneglycol-bis-(beta-aminoethyl ether), N, N$\sp\prime$-tetraacetic acid (EGTA) sufficient to block the Ca$\sp{2+}$-activated inward tail current (I$\sb{\rm B}$).^ Long-term (lasting at least 24 hours) effects of adenylate cyclase activation were examined in a well characterized class of mechanosensory neurons in Aplysia. The injected cells were analyzed 24 hours later by two-electrode voltage-clamp techniques. We found that K$\sp+$ currents of these cells were reduced 24 hours after injection of cAMP. The currents that were reduced by cAMP were very similar to those found to be reduced 24 hours after behavioral sensitization. These results suggest that cAMP is part of the intracellular signal that induces long-term sensitization in Aplysia. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heart is the first organ to form in vertebrates during embryogenesis, and its circulatory function is essential to embryonic survival. Cardiac morphogenesis comprises a complex series of interactions involving cells from several embryonic origins. These cell-cell interactions are regulated temporally and spatially by programs of inductive signaling events, including BMP signaling transduced by Smads and left-right asymmetry signaling mediated by Pitx2. Disruptions of BMP signaling and left-right asymmetry signaling result in abnormal cardiac morphogenesis that causes congenital heart disease in humans. In this study, conventional and conditional gene targeting approaches were employed to dissect the functions of Smad8 and Smad1, intracellular BMP signaling transducers, and Pitx2, a direct target of left-right signaling, in cardiac development. We generated the Smad8mt mutant allele and the Smad8lacZ knock-in allele. Smad8 homozygous mutant mice were viable and fertile without obvious abnormalities. The Smad8lacZ knock-in allele showed that Smad8 was expressed in the myocardium of cardiac outflow tract and atrioventricular cushions. We did not find defects in these Smad8-expressing cardiac regions in Smad8mt/mt and Smad8lacZ/lacZ mutants, indicating that Smad8 is dispensable for cardiac development. Conditional knockout of Smad1 using the Nkx2.5Cre allele in cardiac mesoderm resulted in partial inactivation of Smad1 in the myocardium and complete deletion of Smad1 in the epicardium, and caused ventricular hypoplasia featured with a thinner compact zone, suggesting that Smad1 signaling in the epicardium is required for myocardial morphogenesis in ventricles. Previous data have shown that Pitx2 null mutants exhibit defects in the cardiac outflow tract, a region populated with cells from the cardiac mesoderm and the cardiac neural crest. We found that the cardiac neural crest normally populated into the outflow tract in Pitx2 null mutant. Moreover, specific deletion of Pitx2 in the neural crest resulted in normal heart formation. Deletion of Pitx2 in the cardiac mesoderm caused defective outflow tract, revealing that the function of Pitx2 in the cardiac outflow tract resides in splanchnic and branchial arch mesoderm, and is independent of cardiac neural crest cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Ambulatory blood pressure (ABP) measurement is a means of monitoring cardiac function in a noninvasive way, but little is known about ABP in heart failure (HF) patients. Blood pressure (BP) declines during sleep as protection from consistent BP load, a phenomenon termed "dipping." The aims of this study were (1) to compare BP dipping and physical activity between two groups of HF patients with different functional statuses and (2) to determine whether the strength of the association between ambulatory BP and PA is different between these two different functional statuses of HF. ^ Methods. This observational study used repeated measures of ABP and PA over a 24-hour period to investigate the profiles of BP and PA in community-based individuals with HF. ABP was measured every 30 minutes by using a SpaceLabs 90207, and a Basic Motionlogger actigraph was used to measure PA minute by minute. Fifty-six participants completed both BP and physical activity for a 24-hour monitoring period. Functional status was based on New York Heart Association (NYHA) ratings. There were 27 patients with no limitation of PA (NYHA class I HF) and 29 with some limitation of PA but no discomfort at rest (NYHA class II or III HF). The sample consisted of 26 men and 30 women, aged 45 to 91 years (66.96 ± 12.35). ^ Results. Patients with NYHA class I HF had significantly greater dipping percent than those with NYHA class II/III HF after controlling their left ventricular ejection fraction (LVEF). In a mixed model analysis (PROC MIXED, SAS Institute, v 9.1), PA was significantly related to ambulatory systolic and diastolic BP and mean arterial pressure. The strength of the association between PA and ABP readings was not significantly different for the two groups of patients. ^ Conclusions. These preliminary findings demonstrate differences between NYHA class I and class II/III of HF in BP dipping status and ABP but not PA. Longitudinal research is recommended to improve understanding of the influence of disease progression on changes in 24-hour physical activity and BP profiles of this patient population. ^ Key Words. Ambulatory Blood Pressure; Blood Pressure Dipping; Heart Failure; Physical Activity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prevalent sampling is an efficient and focused approach to the study of the natural history of disease. Right-censored time-to-event data observed from prospective prevalent cohort studies are often subject to left-truncated sampling. Left-truncated samples are not randomly selected from the population of interest and have a selection bias. Extensive studies have focused on estimating the unbiased distribution given left-truncated samples. However, in many applications, the exact date of disease onset was not observed. For example, in an HIV infection study, the exact HIV infection time is not observable. However, it is known that the HIV infection date occurred between two observable dates. Meeting these challenges motivated our study. We propose parametric models to estimate the unbiased distribution of left-truncated, right-censored time-to-event data with uncertain onset times. We first consider data from a length-biased sampling, a specific case in left-truncated samplings. Then we extend the proposed method to general left-truncated sampling. With a parametric model, we construct the full likelihood, given a biased sample with unobservable onset of disease. The parameters are estimated through the maximization of the constructed likelihood by adjusting the selection bias and unobservable exact onset. Simulations are conducted to evaluate the finite sample performance of the proposed methods. We apply the proposed method to an HIV infection study, estimating the unbiased survival function and covariance coefficients. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pitx2, a paired-related homeobox gene that is mutated in human Rieger Syndrome, plays a key role in transferring the early asymmetric signals to individual organs. Pitx2 encodes three isoforms, Pitx2a, Pitx2b and Pitx2c. I found that Pitx2c was the Pitx2 isoform for regulating left-right asymmetry in heart, lung and the predominant isoform in guts. Previous studies suggested that the generation of left-right asymmetry within individual organs is an all or none, random event. Phenotypic analysis of various Pitx2 allelic combinations, that encode graded levels of Pitx2c, reveals an organ-intrinsic mechanism for regulating left-right asymmetric morphogenesis based on differential response to Pitx2c levels. The heart needs low Pitx2c levels, while the lungs and duodenum require higher doses of Pitx2c. In addition, the duodenal rotation is under strict control of Pitx2c activity. Left-right asymmetry development for aortic arch arteries involves complex vascular remodeling. Left-sided expression of Pitx2c in these developing vessels implied its potential function in this process. In order to determine if Pitx2c also can regulate the left-right asymmetry of the aortic arch arteries, a Pitx2c-specific loss of function mutation is generated. Although in wild type mice, the direction of the aortic arch is always oriented toward the left side, the directions of the aortic arches in the mutants were randomized, showing that Pitx2c also determined the left-right asymmetry of these vessels. I have further showed that the cardiac neural crest wasn't involved in this vascular remodeling process. In addition, all mutant embryos had Double Outlet Right Ventricle (DORV), a common congenital heart disease. This study provided insight into the mechanism of Pitx2c-mediated late stages of left-right asymmetry development and identified the roles of Pitx2c in regulation of aortic arch remodeling and heart development. ^