3 resultados para Ventilated patients

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To explore the natural trajectory of core body temperature (CBT) and cortisol (CORT) circadian rhythms in mechanically ventilated intensive care unit (MV ICU) patients. ^ Design: Prospective, observational, time-series pilot study. ^ Setting: Medical-surgical and pulmonary ICUs in a tertiary care hospital. ^ Sample: Nine (F = 3, M = 6) adults who were mechanically ventilated within 12 hrs of ICU admission with mean ± SD age of 65.2 ± 14 years old. ^ Measurements: Core body temperature and environmental measures of light, sound, temperature, and relative humidity were logged in 1-min intervals. Hourly urine specimens and 2-hr interval blood specimens were collected for up to 7 consecutive days for CORT assay. Mechanical ventilation days, ICU length of stay, and ICU mortality were documented. Acute Physiology and Chronic Health Evaluation (APACHE) II scores were computed for each study day. The data of each biologic and environmental variable were analyzed using single cosinor analysis of 24-hr serial segments. One patient did not complete the study because mortality occurred within 8 hrs of enrollment. Nine ICU patients completed the study in 1.6 to 7.0 days. ^ Results: No normal circadian rhythm pattern was found when the cosinor-derived parameters of amplitude (one-half the peak-trough variability) and acrophase (peak time) were compared with cosinor-derived parameter reference ranges of healthy, diurnally active humans, although 83% of patient-day CBT segments showed statistically significant (p ≤ .05) and biologically meaningful (R2≥ 0.30) 24-hr rhythms with abnormal cosinor parameters. Cosinor parameters of the environmental temporal profiles showed 27% of light, 76% of ambient temperature, and 78% of relative humidity serial segments had a significant and meaningful 24-hr diurnal pattern. Average daily light intensity varied from 34 to 187 lx with a maximum light exposure of 1877 lx. No sound measurement segment had a statistically significant cosine pattern, and numerous 1-minute interval peaks ≥ 60 dB occurred around the clock. Average daily ambient temperature and relative humidity varied from 19 to 24°C and from 25% to 61%, respectively. There was no statistically significant association between CBT or clinical outcomes and cosinor-derived parameters of the environmental variables. Circadian rhythms of urine and plasma CORT were deferred for later analysis. ^ Conclusions: The natural trajectory of the CBT circadian rhythm in MV ICU patients demonstrated persistent cosinor parameter alteration, even when a significant and meaningful 24-hr rhythm was present. The ICU environmental measures showed erratic light and sound exposures. Room temperature and relative humidity data produced the highest rate of significant and meaningful diurnal 24-hr patterns. Additional research is needed to clarify relations among the CBT biomarker of the circadian clock and environmental variables of MV ICU patients. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Risk factors for Multi-Drug Resistant Acinetobacter (MDRA) acquisition were studied in patients in a burn intensive care unit (ICU) where there was an outbreak of MDRA. Forty cases were matched with eighty controls based on length of stay in the Burn ICU and statistical analysis was performed on data for several different variables. Matched analysis showed that mechanical ventilation, transport ventilation, number of intubations, number of bronchoscopy procedures, total body surface area burn, and prior Methicillin Resistant Staphylococcus aureus colonization were all significant risk factors for MDRA acquisition. ^ MDRA remains a significant threat to the burn population. Treatment for burn patients with MDRA is challenging as resistance to antibiotics continues to increase. This study underlined the need to closely monitor the most critically ill ventilated patients during an outbreak of MDRA as they are the most at risk for MDRA acquisition.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To investigate hemodynamic responses to lateral rotation. ^ Design: Time-series within a randomized controlled trial pilot study. ^ Setting: A medical intensive care unit (ICU) and a medical-surgical ICU in two tertiary care hospitals. ^ Patients: Adult patients receiving mechanical ventilation. ^ Interventions: Two-hourly manual or continuous automated lateral rotation. ^ Measurements and Main Results: Heart rate (HR) and arterial pressure were sampled every 6 seconds for > 24 hours, and pulse pressure (PP) was computed. Turn data were obtained from a turning flow sheet (manual turn) or with an angle sensor (automated turn). Within-subject ensemble averages were computed for HR, mean arterial pressure (MAP), and PP across turns. Sixteen patients were randomized to either the manual (n = 8) or automated (n = 8) turn. Three patients did not complete the study due to hemodynamic instability, bed malfunction or extubation, leaving 13 patients (n = 6 manual turn and n = 7 automated turn) for analysis. Seven patients (54%) had an arterial line. Changes in hemodynamic variables were statistically significant increases ( p < .05), but few changes were clinically important, defined as ≥ 10 bpm (HR) or ≥ 10 mmHg (MAP and PP), and were observed only in the manual-turn group. All manual-turn patients had prolonged recovery to baseline in HR, MAP and PP of up to 45 minutes (p ≤ .05). No significant turning-related periodicities were found for HR, MAP, or PP. Cross-correlations between variables showed variable lead-lag relations in both groups. A statistically, but not clinically, significant increase in HR of 3 bpm was found for the manual-turn group in the back compared with the right lateral position ( F = 14.37, df = 1, 11, p = .003). ^ Conclusions: Mechanically ventilated critically ill patients experience modest hemodynamic changes with manual lateral rotation. A clinically inconsequential increase in HR, MAP, and PP may persist for up to 45 minutes. Automated lateral rotation has negligible hemodynamic effects. ^