29 resultados para Vehicle identification and detection system

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method employing isotopically- and photoaffinity-labeled probes and polyclonal and monoclonal antibody to the probes for the identification, isolation and recovery of protein receptors is described. Antibody was raised against N-(3-(p-azido-m-($\sp{125}$I) -iodophenyl)) propionate (AIPP) coupled to and photolyzed to BSA. The antibodies specifically bound AIPP-derivatized proteins. An isolation system was developed utilizing this probe and two antigenically identical reversible analogues. N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl)propionyl)amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) reacts with primary amines and N-(((3-p-azido-m-($\sp{125}$I) -iodophenyl)propionyl)amidoethyl)dithiopyridine ($\sp{125}$I-AIPP-PDA) reacts with reduced thiols. The applicability of the system was established by derivatizing known ligands (Transferrin and Interferon-alpha) with one of the probes. The ligand-probe was then allowed to interact with its receptor by incubation with SS5 lymphoma cells and cross-linked by photolysis at 300 nm. The photolyzed ligand/probe/receptor preparation was then recovered with AIPP antibody. Utilization of N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl-propionyl)-amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) allowed the components of the photolyzed complex to be separated by treatment with 2-mercaptoethanol in the SDS-PAGE solubilization buffer. Ligand and receptor labeling were then assessed by Coomassie staining and autoradiography. Results of receptor assays suggest that $\sp{125}$I-AIPP was, indeed, transferred to moieties that represent the receptors for both Transferrin and Interferon-alpha. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipids are the major component of cellular membranes. In addition to its structural role, phospholipids play an active and diverse role in cellular processes. The goal of this study is to identify the genes involved in phospholipid biosynthesis in a model eukaryotic system, Saccharomyces cerevisiae. We have focused on the biosynthetic steps localized in the inner mitochondrial membrane; hence, the identification of the genes encoding phosphatidylserine decarboxylase (PSD1), cardiolipin synthase (CLS1), and phosphatidylglycerophosphate synthase (PGS1).^ The PSD1 gene encoding a phosphatidylserine decarboxylase was cloned by complementation of a conditional lethal mutation in the homologous gene in Escherichia coli strain EH150. Overexpression of the PSD1 gene in wild type yeast resulted in 20-fold amplification of phosphatidylserine decarboxylase activity. Disruption of the PSD1 gene resulted in 20-fold reduction of decarboxylase activity, but the PSD1 null mutant exhibited essentially normal phenotype. These results suggest that yeast has a second phosphatidylserine decarboxylation activity.^ Cardiolipin is the major anionic phospholipid of the inner mitochondrial membrane. It is thought to be an essential component of many biochemical functions. In eukaryotic cells, cardiolipin synthase catalyzes the final step in the synthesis of cardiolipin from phosphatidylglycerol and CDP-diacylglycerol. We have cloned the gene CLS1. Overexpression of the CLS1 gene product resulted in significantly elevated cardiolipin synthase activity, and disruption of the CLS1 gene, confirmed by PCR and Southern blot analysis, resulted in a null mutant that was viable and showed no petite phenotype. However, phospholipid analysis showed undetectable cardiolipin level and an accumulation of phosphatidylglycerol. These results support the conclusion that CLS1 encodes the cardiolipin synthase of yeast and that normal levels of cardiolipin are not absolutely essential for survival of the cell.^ Phosphatidylglycerophosphate (PGP) synthase catalyzes the synthesis of PGP from CDP-diacylglycerol and glycerol-3-phosphate and functions as the committal and rate limiting step in the biosynthesis of cardiolipin. We have identified the PGS1 gene as encoding the PGP synthase. Overexpression of the PGS1 gene product resulted in over 15-fold increase in in vitro PGP synthase activity. Disruption of the PGS1 gene in a haploid strain of yeast, confirmed by Southern blot analysis, resulted in a null mutant strain that was viable but had significantly altered phenotypes, i.e. inability to grow on glycerol and at $37\sp\circ$C. These cells showed over a 10-fold decrease in PGP synthase activity and a decrease in both phosphatidylglycerol and cardiolipin levels. These results support the conclusion that PGS1 encodes the PGP synthase of yeast and that neither phosphatidylglycerol nor cardiolipin are absolutely essential for survival of the cell. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In common with other members of the p120-catenin subclass of catenins, ARVCF-catenin appears to have multiple cellular and developmental functions. In Xenopus, our lab recently demonstrated that xARVCF- and Xp120-catenins are each essential for early vertebrate embryogenesis, being functionally linked to Rho-family GTPases (RhoA, Rac) and cadherin metabolic stability. For the project described here, the yeast two-hybrid system was employed to screen a Xenopus laevis neurula library for proteins that interact with xARVCF, resulting in the identification of the Xenopus homolog of Kazrin (xKazrin). Kazrin is a variably-spliced protein of unknown function that has been shown to interact with periplakin and envoplakin, components of desmosomal junctions. Kazrin's primary sequence is highly conserved across vertebrate species and is composed of an amino-terminal nuclear export sequence (NES), a carboxy-terminal nuclear localization sequence (NLS) and a central predicted coiled-coil domain. In vitro and in vivo authenticity tests demonstrated that xARVCF-catenin interacts directly with xKazrin via xARVCF's Armadillo and carboxy-terminal regions and xKazrin's coiled-coil domain. The interaction of xARVCF-catenin with xKazrin is specific and does not extend to the related Xp120-catenin. xKazrin co-localized with E-cadherin at sites of cell-cell contact and could be co-immunoprecipitated with components of the cadherin complex. xKazrin was also present in the cytoplasm and nucleus. Suggestive of a nuclear role, mutation of xKazrin's predicted NLS resulted in nuclear exclusion, while deletion of the predicted NES resulted in loss of sensitivity to nuclear export inhibitors. Within Xenopus embryos, xKazrin was expressed across all developmental stages and appeared at varying levels in adult tissues. Morpholino depletion of xKazrin from Xenopus embryos resulted in axial elongation abnormalities and loss of tissue integrity after neurulation. Over-expression of xKazrin had no effect, while over-expression of a NLS mutant resulted in a mild phenotype similar to that seen in xKazrin depleted embryos. Interestingly, the axial phenotype resulting from reduced xKazrin levels was largely rescuable by xARVCF over-expression. In conjunction with xARVCF-catenin, xKazrin has properties consistent with its function at cell-cell contact sites and in the nucleus. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart development is a crucial and conserved process that is related to the major type of human birth defects. Dorsal vessel, the Drosophila heart, has been regarded as an insightful system to identify new genes and study gene functions involved in heart development. Using heart-specific GFP transgenes, I did a genetic screen for cardiogenic genes on Drosophila chromosome II. Drosophila mutants that carry chromosome II deficiencies were tested for their phenotypes of heart development. Based on the screen results, chromosome regions containing genes required for heart development were identified. Fly strains with single gene mutations located within the defined deficiency regions were tested further. Seven genes have been identified to be involved in heart development. ^ The LIM homeodomain transcription factor gene tailup (tup) was further studied for its function in heart development. Based on this study, tup is expressed in cardioblasts and pericardial cells of the heart tube, as well as in associated lymph glands and alary muscles. In depth analysis of tup mutant phenotypes demonstrated tup is required for normal development of both heart and lymph glands. Tup was shown to bind to two DNA recognition sequences in the dorsal vessel enhancer of the Hand bHLH transcription factor gene, with one site proven essential for the expression of Hand in lymph glands, pericardial cells, and Svp/Doc cardioblasts. Together, these studies demonstrate that Tup is a critical new transcription factor in dorsal vessel morphogenesis and lymph gland formation, and strongly suggest Tup is a direct regulator of the expression of Hand in these developmental processes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. In 2003, the State of Texas instituted the Driver Responsibility Program (TDRP), a program consisting of a driving infraction point system coupled with a series of graded fines and annual surcharges for specific traffic violations such as driving while intoxicated (DWI). Approximately half of the revenues generated are earmarked to be disbursed to the state's trauma system to cover uncompensated trauma care costs. This study examined initial program implementation, the impact of trauma system funding, and initial impact on impaired driving knowledge, attitudes and behaviors. A model for targeted media campaigns to improve the program's deterrence effects was developed. ^ Methods. Data from two independent driver survey samples (conducted in 1999 and 2005), department of public safety records, state health department data and a state auditor's report were used to evaluate the program's initial implementation, impact and outcome with respect to drivers' impaired driving knowledge, attitudes and behavior (based on constructs of social cognitive theory) and hospital uncompensated trauma care funding. Survey results were used to develop a regression model of high risk drivers who should be targeted to improve program outcome with respect to deterring impaired driving. ^ Results. Low driver compliance with fee payment (28%) and program implementation problems were associated with lower surcharge revenues in the first two years ($59.5 million versus $525 million predicted). Program revenue distribution to trauma hospitals was associated with a 16% increase in designated trauma centers. Survey data demonstrated that only 28% of drivers are aware of the TDRP and that there has been no initial impact on impaired driving behavior. Logistical regression modeling suggested that target media campaigns highlighting the likelihood of DWI detection by law enforcement and the increased surcharges associated with the TDRP are required to deter impaired driving. ^ Conclusions. Although the TDRP raised nearly $60 million in surcharge revenue for the Texas trauma system over the first two years, this study did not find evidence of a change in impaired driving knowledge, attitudes or behaviors from 1999 to 2005. Further research is required to measure whether the program is associated with decreased alcohol-related traffic fatalities. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone marrow (BM) stromal cells are ascribed two key functions, 1) stem cells for non-hematopoietic tissues (MSC) and 2) as components of the hematopoietic stem cell niche. Current approaches studying the stromal cell system in the mouse are complicated by the low yield of clonogenic progenitors (CFU-F). Given the perivascular location of MSC in BM, we developed an alternative methodology to isolate MSC from mBM. An intact ‘plug’ of bone marrow is expelled from bones and enzymatically disaggregated to yield a single cell suspension. The recovery of CFU-F (1917.95+199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32+1.9) by at least 2 orders of magnitude (P<0.001; N = 8) with an accompanying 196-fold enrichment of CFU-F frequency. Purified BM stromal and vascular endothelial cell populations are readily obtained by FACS. A detailed immunophenotypic analysis of lineage depleted BM identified PDGFRαβPOS stromal cell subpopulations distinguished by their expression of CD105. Both subpopulations retained their original phenotype of CD105 expression in culture and demonstrate MSC properties of multi-lineage differentiation and the ability to transfer the hematopoietic microenvironment in vivo. To determine the capacity of either subpopulation to support long-term multi-lineage reconstituting HSCs, we fractionated BM stromal cells into either the LinNEGPDGFRαβPOSCD105POS and LINNEGPDGFRαβPOSCD105LOW/- populations and tested their capacity to support LT-HSC by co-culturing each population with either 1 or 10 HSCs for 10 days. Following the 10 day co-culture period, both populations supported transplantable HSCs from 10 cells/well co-cultures demonstrating high levels of donor repopulation with an average of 65+23.6% chimerism from CD105POS co-cultures and 49.3+19.5% chimerism from the CD105NEG co-cultures. However, we observed a significant difference when mice were transplanted with the progeny of a single co-cultured HSC. In these experiments, CD105POS co-cultures (100%) demonstrated long-term multi- lineage reconstitution, while only 4 of 8 mice (50%) from CD105NEG -single HSC co-cultures demonstrated long-term reconstitution, suggesting a more limited expansion of functional stem cells. Taken together, these results demonstrate that the PDGFRαβCD105POS stromal cell subpopulation is distinguished by a unique capacity to support the expansion of long-term reconstituting HSCs in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterococci are one of the leading causes of nosocomial infections, and Enterococcus faecalis causes the majority of enterococcal infections. However, the mechanisms of enterococcal pathogenesis are still not yet understood. In our initial screening of E. faecalis strain OG1RF genomic libraries, autolysin and a homolog of a protein of Enterococcus faecium previously designated P54 were found to be two major antigens that reacted with human patient sera, and an antigen designated MH-1 antigen that reacted with serum from a endocarditis patient was also identified. To explore a possible role for these antigens in enterococcal infections, the genes encoding these three antigens were disrupted in Enterococcus faecalis OG1RF. ^ To explore a possible role of an E. faecalis gelatinase (encoded by gelE), which belongs to a family of Zn-metalloproteases that have been shown to be virulence factors in other organisms, in enterococcal infections, an insertion mutant was constructed in OG1RF and tested in the mouse peritonitis model. The mice infected with the gelE mutant showed a significantly prolonged survival compared to the wild type strain. To study the expression of gelE, the regions flanking gelE were sequenced. Sequence analysis of the gelE flanking regions revealed three genes (fsrA, fsrB and fsrC) upstream of gelE that show homology to the genes in a locus (agr) that globally regulates the expression of virulence factors in Staphylococcus aureus and one open reading frame (sprE) with homology to bacterial serine protease downstream of gelE. ^ In conclusion, in this study of identification of possible virulence factors in E. faecalis surface and secreted proteins, of three genes encoding antigens detected by human patient sera, none could be shown to effect virulence in the mouse peritonitis model. Inactivation of one of these antigens (autolysin) was shown to slightly increase the tolerance of E. faecalis to penicillin. A serine protease and a locus (fsr) that regulates the expression of gelE and sprE were shown to be important for enterococcal infection in the mouse peritonitis model. (Abstract shortened by UMI.)^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterococci are normal flora in the human intestinal tract, and also one of the leading causes of nosocomial infections, with most of the clinical isolates being Enterococcus faecalis and Enterococcus faecium. Despite extensive studies on the antibiotic resistance, the pathogenicity of enterococci is not well understood, especially for E. faecium. To identify potential virulence factors based on their antigenicity during infection, E. faecium genomic libraries were constructed and screened using sera from patients with E. faecium endocarditis. ^ As one of my projects, total polysaccharides were extracted from E. faecalis OG1RF and from two epa mutants constructed previously, TX5179 and TX5180, and western blots with patient sera showed that an immuno-reactive polysaccharide present in wild type OG1RF was not produced by either of the two epa mutants. The epa mutants were more sensitive to ethanol stress, neutrophil killing and neutrophil phagocytosis than the wild type OG1RF. ^ Expression of virulence factors is commonly regulated by two component systems. A BLAST search was performed to identify potential two component systems in the E. faecalis V583 genome database using PhoP/PhoS as query sequences, and 11 gene pairs were identified, seven of which were disrupted in E. faecalis OGIRF. ^ Finally, an in vitro translocation model was established for enterococci. E. faecalis strain OG1RF and E. faecium strain DO were shown to be able to translocate across a T84 monolayer, while E. coli strain DH5α and E. faecalis strain E1 could not. ^ In conclusion, several E. faecium antigens expressed in infection (whose antibodies present in sera from patients with E. faecium endocarditis) were identified, two of which, SagA and GlyA, were characterized and suggested to be involved in cell wall metabolism. E. faecalis epa gene cluster (involving in polysaccharide biosynthesis and known to be involved in virulence of E. faecalis in mice) was shown to be involved in hindering neutrophil killing. Several two-component systems were identified in E. faecalis and two of which, EtaRS and EtbRS, were involved in E. faecalis virulence in a mouse peritonitis model.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carcinomas that arise from the ovarian surface epithelium represent a great challenge in gynecologic oncology. Although the prognosis of ovarian cancer is influenced by many factors capable of predicting clinical outcome, including tumor stage, pathological grade, and amount of residual disease following primary surgery, the biological aspects of ovarian cancer are not completely understood, thus implying that there may be other predictive indicators that could be used independently or in conjunction with these factors to provide a clearer clinical picture. The identification of additional markers with biological relevance is desirable. To identify disease-associated peptides, a phage display random peptide library was used to screen immunoglobulins derived from a patient with ovarian cancer. One peptide was markedly enriched following three rounds of affinity selection. The presence of autoantibodies against the peptide was examined in a panel of ovarian cancer patients. Stage IV patients exhibited a high percentage of positive reactivity (59%). This was in contrast to stage III patients, who only displayed 7% positive reactivity. Antibodies against the peptide were affinity purified, and heat-shock protein 90 (Hsp90) was identified as the corresponding autoantigen. The expression profile of the identified antigen was determined. Hsp90 was expressed in all sections examined regardless of degree of anaplasia. This thesis shows that utilizing the humoral response to ovarian cancer can be used to identify a tumor antigen in ovarian cancer. The data show that certain antigens may be expressed in ovarian tumors independent of the disease stage or grade, whereas circulating antibodies against such epitopes are only found in a subset of patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcus aureus is an opportunistic pathogen that is a major health threat in the clinical and community settings. An interesting hallmark of patients infected with S. aureus is that they do not usually develop a protective immune response and are susceptible to reinfection, in part because of the ability of S. aureus to modulate host immunity. The ability to evade host immune responses is a key contributor to the infection process and is critical in S. aureus survival and pathogenesis. This study investigates the immunomodulatory effects of two secreted proteins produced by S. aureus, the MHC class II analog protein (Map) and the extracellular fibrinogen-binding protein (Efb). Map has been demonstrated to modulate host immunity by interfering with T cell function. Map has been shown to significantly reduce T cell proliferative responses and significantly reduce delayed-type hypersensitivity responses to challenge antigen. In addition, the effects of Map on the infection process were tested in a mouse model of infection. Mice infected with Map− S. aureus (Map deficient strain) presented with significantly reduced levels of arthritis, osteomyelitis and abscess formation compared to mice infected with the wild-type Map+S. aureus strain suggesting that Map−S. aureus is much less virulent than Map+S. aureus. Furthermore, Map−S. aureus-infected nude mice developed arthritis and osteomyelitis to a severity similar to Map +S. aureus-infected controls, suggesting that T cells can affect disease outcome following S. aureus infection and Map may attenuate cellular immunity against S. aureus. The extracellular fibrinogen-binding protein (Efb) was identified when cultured S. aureus supernatants were probed with the complement component C3. The binding of C3 to Efb resulted in studies investigating the effects of Efb on complement activation. We have demonstrated that Efb can inhibit both the classical and alternative complement pathways. Moreover, we have shown that Efb can inhibit complement mediated opsonophagocytosis. Further studies have characterized the Efb-C3 binding interaction and localized the C3-binding domain to the C-terminal region of Efb. In addition, we demonstrate that Efb binds specifically to a region within the C3d fragment of C3. This study demonstrates that Map and Efb can interfere with both the acquired and innate host immune pathways and that these proteins contribute to the success of S. aureus in evading host immunity and in establishing disease. ^