2 resultados para Vehicle Packaging
em DigitalCommons@The Texas Medical Center
Resumo:
Purpose. To evaluate trends in the utilization of head, abdominal, thoracic and other body regions CTs in the management of victims of MVC at a level I trauma center from 1996 to 2006.^ Method. From the trauma registry, I identified patients involved in MVC's in a level I trauma center and categorized them into three age groups of 13-18, 19-55 and ≥56. I used International Classification of Disease (ICD-9-CM) codes to find the type and number of CTs examinations performed for each patient. I plotted the mean number of CTs per patient against year of admission to find the crude estimate of change in utilization pattern for each type of CT. I used logistic regression to assess whether repetitive CTs (≥ 2) for head, abdomen, thorax and other body regions were associated with age group and year of admission for MVC patients. I adjusted the estimates for gender, ethnicity, insurance status, mechanism and severity of injury, intensive care unit admission status, patient disposition (dead or alive) and year of admission.^ Results. Utilization of head, abdominal, thoracic and other body regions CTs significantly increased over 11-year period. Utilization of head CT was greatest in the 13-18 age group, and increased from 0.58 CT/patient in 1996 to 1.37 CT/patient in 2006. Abdominal CTs were more common in the ≥56+ age group, and increased from 0.33 CT/patient in 1996 to 0.72 CT/patient in 2006. Utilization of thoracic CTs was higher in the 56+ age group, and increased from 0.01 CT/patient in 1996 to 0.42 CT/patient in 2006. Utilization of other CTs did not change materially during the study period for adolescents, adults or older adults. In the multivariable analysis, after adjustment for potential confounders, repetitive head CTs significantly increased in the 13-18 age group (95% CI: 1.29-1.87, p=<0.001) relative to the 19-55 age group. Repetitive thoracic CT use was lower in adolescents (95% CI: 0.22-0.70, p=<0.001) relative to the 19-55 age group.^ Conclusion. There has been a substantial increase in the utilization of head, abdominal, thoracic and other CTs in the management of MVC patients. Future studies need to identify if increased utilization of CTs have resulted in better health outcome for these patients. ^
Resumo:
Feline immunodeficiency virus (FIV)-based gene transfer systems are being seriously considered for human gene therapy as an alternative to vectors based on primate lentiviruses, a genetically complex group of retroviruses capable of infecting non-dividing cells. The greater phylogenetic distance between the feline and primate lentiviruses is thought to reduce chances of the generation of recombinant viruses. However, safety of FIV-based vector systems has not been tested experimentally. Since primate lentiviruses such as human and simian immunodeficiency viruses (HIV/SIV) can cross-package each other's genomes, we tested this trait with respect to FIV. Unexpectedly, both feline and primate lentiviruses were reciprocally able to both cross-package and propagate each other's RNA genomes. This was largely due to the recognition of viral packaging signals by the heterologous proteins. However, a simple retrovirus such as Mason-Pfizer monkey virus (MPMV) was unable to package FIV RNA. Interestingly, FIV could package MPMV RNA, but not propagate it for further steps of replication. These findings suggest that upon co-infection of the same host, cross-packaging may allow distinct retroviruses to generate chimeric variants with unknown pathogenic potential. ^ In order to understand the packaging determinants in FIV, we conducted a detailed mutational analysis of the region thought to contain FIV packaging signal. We show that the first 90–120 nt of the 5′ untranslated region (UTR) and the first 90 nt of gag were simultaneously required for efficient FIV RNA packaging. These results suggest that the primary FIV packaging signal is multipartite and discontinuous, composed of two core elements separated by 150 nt of the 5 ′UTR. ^ The above studies are being used towards the development of safer FIV-based self-inactivating (SIN) vectors. These vectors are being designed to eliminate the ability of FIV transfer vector RNAs to be mobilized by primate lentiviral proteins that may be present in the target cells. Preliminary test of the first generation of these vectors has revealed that they are incapable of being propagated by feline proteins. The inability of FIV transfer vectors to express packageable vector RNA after integration should greatly increase the safety of FIV vectors for human gene therapy. ^