5 resultados para Variability of the pulse wave
em DigitalCommons@The Texas Medical Center
Resumo:
DCE-MRI is an important technique in the study of small animal cancer models because its sensitivity to vascular changes opens the possibility of quantitative assessment of early therapeutic response. However, extraction of physiologically descriptive parameters from DCE-MRI data relies upon measurement of the vascular input function (VIF), which represents the contrast agent concentration time course in the blood plasma. This is difficult in small animal models due to artifacts associated with partial volume, inflow enhancement, and the limited temporal resolution achievable with MR imaging. In this work, the development of a suite of techniques for high temporal resolution, artifact resistant measurement of the VIF in mice is described. One obstacle in VIF measurement is inflow enhancement, which decreases the sensitivity of the MR signal to the presence of contrast agent. Because the traditional techniques used to suppress inflow enhancement degrade the achievable spatiotemporal resolution of the pulse sequence, improvements can be achieved by reducing the time required for the suppression. Thus, a novel RF pulse which provides spatial presaturation contemporaneously with the RF excitation was implemented and evaluated. This maximizes the achievable temporal resolution by removing the additional RF and gradient pulses typically required for suppression of inflow enhancement. A second challenge is achieving the temporal resolution required for accurate characterization of the VIF, which exceeds what can be achieved with conventional imaging techniques while maintaining adequate spatial resolution and tumor coverage. Thus, an anatomically constrained reconstruction strategy was developed that allows for sampling of the VIF at extremely high acceleration factors, permitting capture of the initial pass of the contrast agent in mice. Simulation, phantom, and in vivo validation of all components were performed. Finally, the two components were used to perform VIF measurement in the murine heart. An in vivo study of the VIF reproducibility was performed, and an improvement in the measured injection-to-injection variation was observed. This will lead to improvements in the reliability of quantitative DCE-MRI measurements and increase their sensitivity.
Resumo:
Electrical synapses formed of the gap junction protein Cx36 show a great deal of functional plasticity, much dependent on changes in phosphorylation state of the connexin. However, gap junction turnover may also be important for regulating cell-cell communication, and turnover rates of Cx36 have not been studied. Connexins have relatively fast turnover rates, with short half-lives measured to be 1.5 to 3.5 hours in pulse-chase analyses of connexins (Cx26 and Cx43) in tissue culture cells and whole organs. We utilized HaloTag technology to study the turnover rate of Cx36 in transiently transfected HeLa cells. The HaloTag protein forms irreversible covalent bonds with chloroalkane ligands, allowing pulse-chase experiments to be performed very specifically. The HaloTag open reading frame was inserted into an internal site in the C-terminus of Cx36 designed not to disrupt the regulatory phosphorylation sites and not to block the C-terminal PDZ interaction motif. Functional properties of Cx36-Halo were assessed by Neurobiotin tracer coupling, live cell imaging, and immunostaining. For the pulse-chase study, transiently transfected HeLa cells were pulse labeled with Oregon Green (OG) HaloTag ligand and chase labeled at various times with tetramethylrhodamine (TMR) HaloTag ligand. Cx36-Halo formed large junctional plaques at sites of contact between transfected HeLa cells and was also contained in a large number of intracellular vesicles. The Cx36-Halo transfected HeLa cells supported Neurobiotin tracer coupling that was regulated by activation and inhibition of PKA in the same manner as wild-type Cx36 transfected cells. In the pulse-chase study, junctional protein labeled with the pulse ligand (OG) was gradually replaced by newly synthesized Cx36 labeled with the chase ligand (TMR). The half-life for turnover of protein in junctional plaques was 2.8 hours. Treatment of the pulse-labeled cells with Brefeldin A (BFA) prevented the addition of new connexins to junctional plaques, suggesting that the assembly of Cx36 into gap junctions involves the traditional ER-Golgi-TGN-plasma membrane pathway. In conclusion, Cx36-Halo is functional and has a turnover rate in HeLa cells similar to that of other connexins that have been studied. This turnover rate is likely too slow to contribute substantially to short-term changes in coupling of neurons driven by transmitters such as dopamine, which take minutes to achieve. However, turnover may contribute to longer-term changes in coupling.
Resumo:
Background. Obesity is a major health problem throughout the industrialized world. Despite numerous attempts to curtail the rapid growth of obesity, its incidence continues to rise. Therefore, it is crucial to better understand the etiology of obesity beyond the concept of energy balance.^ Aims. The first aim of this study was to first investigate the relationship between eating behaviors and body size. The second goal was to identify genetic variation associated with eating behaviors. Thirdly, this study aimed to examine the joint relationships between eating behavior, body size and genetic variation.^ Methods. This study utilized baseline data ascertained in young adults from the Training Interventions and Genetics of Exercise (TIGER) Study. Variables assessed included eating behavior (Emotional Eating Scale, Eating Attitudes Test-26, and the Block98 Food Frequency Questionnaire), body size (body mass index, waist and hip circumference, waist/hip ratio, and percent body fat), genetic variation in genes implicated related to the hypothalamic control of energy balance, and appropriate covariates (age, gender, race/ethnicity, smoking status, and physical activity. For the genetic association analyses, genotypes were collapsed by minor allele frequency, and haplotypes were estimated for each gene. Additionally, Bayesian networks were constructed in order to determine the relationships between genetic variation, eating behavior and body size.^ Results. We report that the EAT-26 score, Caloric intake, percent fat, fiber intake, HEAT index, and daily servings of vegetables, meats, grains, and fats were significantly associated with at least one body size measure. Multiple SNPs in 17 genes and haplotypes from 12 genes were tested for their association with body size. Variation within both DRD4 and HTR2A was found to be associated with EAT-26 score. In addition, variation in the ghrelin gene (GHRL) was significantly associated with daily Caloric intake. A significant interaction between daily servings of grains and the HEAT index and variation within the leptin receptor gene (LEPR) was shown to influence body size.^ Conclusion. This study has shown that there is a substantial genetic component to eating behavior and that genetic variation interacts with eating behavior to influence body size.^