9 resultados para VOLUNTARY TURNOVER

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voluntary control of information processing is crucial to allocate resources and prioritize the processes that are most important under a given situation; the algorithms underlying such control, however, are often not clear. We investigated possible algorithms of control for the performance of the majority function, in which participants searched for and identified one of two alternative categories (left or right pointing arrows) as composing the majority in each stimulus set. We manipulated the amount (set size of 1, 3, and 5) and content (ratio of left and right pointing arrows within a set) of the inputs to test competing hypotheses regarding mental operations for information processing. Using a novel measure based on computational load, we found that reaction time was best predicted by a grouping search algorithm as compared to alternative algorithms (i.e., exhaustive or self-terminating search). The grouping search algorithm involves sampling and resampling of the inputs before a decision is reached. These findings highlight the importance of investigating the implications of voluntary control via algorithms of mental operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bronchial epithelial cells play a pivotal role in airway inflammation, but little is known about posttranscriptional regulation of mediator gene expression during the inflammatory response in these cells. Here, we show that activation of human bronchial epithelial BEAS-2B cells by proinflammatory cytokines interleukin-4 (IL-4) and tumor necrosis factor alpha (TNF-alpha) leads to an increase in the mRNA stability of the key chemokines monocyte chemotactic protein 1 and IL-8, an elevation of the global translation rate, an increase in the levels of several proteins critical for translation, and a reduction of microRNA-mediated translational repression. Moreover, using the BEAS-2B cell system and a mouse model, we found that RNA processing bodies (P bodies), cytoplasmic domains linked to storage and/or degradation of translationally silenced mRNAs, are significantly reduced in activated bronchial epithelial cells, suggesting a physiological role for P bodies in airway inflammation. Our study reveals an orchestrated change among posttranscriptional mechanisms, which help sustain high levels of inflammatory mediator production in bronchial epithelium during the pathogenesis of inflammatory airway diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of transcriptional pulsing approaches using the c-fos and Tet-off promoter systems greatly facilitated studies of mRNA turnover in mammalian cells. However, optimal protocols for these approaches vary for different cell types and/or physiological conditions, limiting their widespread application. In this study, we have further optimized transcriptional pulsing systems for different cell lines and developed new protocols to facilitate investigation of various aspects of mRNA turnover. We apply the Tet-off transcriptional pulsing strategy to investigate ARE-mediated mRNA decay in human erythroleukemic K562 cells arrested at various phases of the cell cycle by pharmacological inhibitors. This application facilitates studies of the role of mRNA stability in control of cell-cycle dependent gene expression. To advance the investigation of factors involved in mRNA turnover and its regulation, we have also incorporated recently developed transfection and siRNA reagents into the transcriptional pulsing approach. Using these protocols, siRNA and DNA plasmids can be effectively cotransfected into mouse NIH3T3 cells to obtain high knockdown efficiency. Moreover, we have established a tTA-harboring stable line using human bronchial epithelial BEAS-2B cells and applied the transcriptional pulsing approach to monitor mRNA deadenylation and decay kinetics in this cell system. This broadens the application of the transcriptional pulsing system to investigate the regulation of mRNA turnover related to allergic inflammation. Critical factors that need to be considered when employing these approaches are characterized and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general objective of this research was to compare the relative effectiveness of court mandated services versus a voluntary service plan in preventing in child maltreatment recidivism. Four-thirty-two children were selected at random from among children in a large California County who were receiving in-home services under a court mandate or a voluntary plan. Protective services files of study children were reviewed to derive study data. Type of plan did not make a difference on case outcome. Children were more likely to remain in the home at the end of the service delivery period in families that received voluntary plans. However, when other factors are controlled, the advantage of a voluntary plan disappears. Moreover, similar rates of recidivism were noted between both types of plans after the case was closed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The central objective of this study was to systematically examine the internal structure of multihospital systems, determining the management principles used and the performance levels achieved in medical care and administrative areas.^ The Universe. The study universe consisted of short-term general American hospitals owned and operated by multihospital corporations. Corporations compared were the investor-owned (for-profit) and the voluntary multihospital systems. The individual hospital was the unit of analysis for the study.^ Theoretical Considerations. The contingency theory, using selected aspects of the classical and human relations schools of thought, seemed well suited to describe multihospital organization and was used in this research.^ The Study Hypotheses. The main null hypotheses generated were that there are no significant differences between the voluntary and the investor-owned multihospital sectors in their (1) hospital structures and (2) patient care and administrative performance levels.^ The Sample. A stratified random sample of 212 hospitals owned by multihospital systems was selected to equally represent the two study sectors. Of the sampled hospitals approached, 90.1% responded.^ The Analysis. Sixteen scales were constructed in conjunction with 16 structural variables developed from the major questions and sub-items of the questionnaire. This was followed by analysis of an additional 7 structural and 24 effectiveness (performance) measures, using frequency distributions. Finally, summary statistics and statistical testing for each variable and sub-items were completed and recorded in 38 tables.^ Study Findings. While it has been argued that there are great differences between the two sectors, this study found that with a few exceptions the null hypotheses of no difference in organizational and operational characteristics of non-profit and for-profit hospitals was accepted. However, there were several significant differences found in the structural variables: functional specialization, and autonomy were significantly higher in the voluntary sector. Only centralization was significantly different in the investor owned. Among the effectiveness measures, occupancy rate, cost of data processing, total manhours worked, F.T.E. ratios, and personnel per occupied bed were significantly higher in the voluntary sector. The findings indicated that both voluntary and for-profit systems were converging toward a common hierarchical corporate management approach. Factors of size and management style may be better descriptors to characterize a specific multihospital group than its profit or nonprofit status. (Abstract shortened with permission of author.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical synapses formed of the gap junction protein Cx36 show a great deal of functional plasticity, much dependent on changes in phosphorylation state of the connexin. However, gap junction turnover may also be important for regulating cell-cell communication, and turnover rates of Cx36 have not been studied. Connexins have relatively fast turnover rates, with short half-lives measured to be 1.5 to 3.5 hours in pulse-chase analyses of connexins (Cx26 and Cx43) in tissue culture cells and whole organs. We utilized HaloTag technology to study the turnover rate of Cx36 in transiently transfected HeLa cells. The HaloTag protein forms irreversible covalent bonds with chloroalkane ligands, allowing pulse-chase experiments to be performed very specifically. The HaloTag open reading frame was inserted into an internal site in the C-terminus of Cx36 designed not to disrupt the regulatory phosphorylation sites and not to block the C-terminal PDZ interaction motif. Functional properties of Cx36-Halo were assessed by Neurobiotin tracer coupling, live cell imaging, and immunostaining. For the pulse-chase study, transiently transfected HeLa cells were pulse labeled with Oregon Green (OG) HaloTag ligand and chase labeled at various times with tetramethylrhodamine (TMR) HaloTag ligand. Cx36-Halo formed large junctional plaques at sites of contact between transfected HeLa cells and was also contained in a large number of intracellular vesicles. The Cx36-Halo transfected HeLa cells supported Neurobiotin tracer coupling that was regulated by activation and inhibition of PKA in the same manner as wild-type Cx36 transfected cells. In the pulse-chase study, junctional protein labeled with the pulse ligand (OG) was gradually replaced by newly synthesized Cx36 labeled with the chase ligand (TMR). The half-life for turnover of protein in junctional plaques was 2.8 hours. Treatment of the pulse-labeled cells with Brefeldin A (BFA) prevented the addition of new connexins to junctional plaques, suggesting that the assembly of Cx36 into gap junctions involves the traditional ER-Golgi-TGN-plasma membrane pathway. In conclusion, Cx36-Halo is functional and has a turnover rate in HeLa cells similar to that of other connexins that have been studied. This turnover rate is likely too slow to contribute substantially to short-term changes in coupling of neurons driven by transmitters such as dopamine, which take minutes to achieve. However, turnover may contribute to longer-term changes in coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of uterine quiescence involves the integration of the signaling pathways regulating uterine contraction and relaxation. Uterine contractants increase intracellular calcium through receptor/GαqPLC coupling, resulting in contraction of the myometrium. Elevation of cAMP concentration has been correlated with relaxation of the myometrium. However, the mechanism of cAMP action in the uterus is unclear. ^ Both endogenous and exogenous increases in cAMP inhibited oxytocin-stimulated phosphatidylinositide turnover in an immortalized pregnant human myometrial cell line (PHM1-41). This inhibition was reversed by cAMP-dependent protein kinase (PKA) inhibitors, suggesting the involvement of PKA. cAMP inhibited phosphatidyinositide turnover stimulated by different agonists in different cell lines. These data suggest that the cAMP inhibitory mechanism is neither cell nor receptor dependent, and inhibits Gαq/PLCβ1 and PLCβ3 coupling. ^ The subcellular localization of PKA occurs via PKA binding to A-Kinase-Anchoring-Proteins (AKAP), and peptides that inhibit this association have been developed (S-Ht31). S-Ht31 blocked cAMP-stimulated PKA activity and decreased PKA concentration in PHM1-41 cell plasma membranes. S-Ht31 reversed the ability of CPT-cAMP, forskolin and relaxin to inhibit phosphatidylinositide turnover in PHM1-41 cells. Overlay analysis of both PHM1-41 cell and nonpregnant rat myometrium found an AKAPs of 86 kDa and 150 kDa associated with the plasma membrane, respectively. These data suggest that PKA anchored to the plasma membrane via AKAP150/PKA anchoring is involved in the cAMP inhibitory mechanism. ^ CPT-cAMP and isoproterenol inhibited phosphatidylinositide turnover in rat myometrium from days 12 through 20 of gestation. In contrast, neither agent was effective in the 21 day pregnant rat myometrium. The decrease in the cAMP inhibitory mechanism was correlated with a decrease in PKA and an increase in protein phosphatase 2B (PP2B) concentration in rat myometrial plasma membranes on day 21 of gestation. In myometrial total cell homogenates, both PKA and PP2B concentration increased on day 21. S-Ht31 inhibited cAMP inhibition of phosphatidylinositide turnover in day 19 pregnant rat myometrium. Both PKA and PP2B coimmunoprecipitated with an AKAP150 in a gestational dependent manner, suggesting this AKAP localizes PKA and PP2B to the plasma membrane. ^ These data presented demonstrate the importance of the cAMP inhibitory mechanism in regulating uterine contractility. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proto-oncogene c-fos is a member of the class of early-response genes whose transient expression plays a crucial role in cell proliferation, differentiation, and apoptosis. Degradation of c- fos mRNA is an important mechanism for controlling c-fos expression. Rapid mRNA turnover mediated by the protein-coding-region determinant (mCRD) of the c-fos transcript illustrates a functional interplay between mRNA turnover and translation that coordinately influences the fate of cytoplasmic mRNA. It is suggested that mCRD communicates with the 3′ poly(A) tail via an mRNP complex comprising mCRD-associated proteins, which prevents deadenylation in the absence of translation. Ribosome transit as a result of translation is required to alter the conformation of the mRNP complex, thereby eliciting accelerated deadenylation and mRNA decay. To gain further insight into the mechanism of mCRD-mediated mRNA turnover, Unr was identified as an mCRD-binding protein, and its binding site within mCRD was characterized. Moreover, the functional role for Unr in mRNA decay was demonstrated. The result showed that elevation of Unr protein level in the cytoplasm led to inhibition of mRNA destabilization by mCRD. In addition, GST pull-down assay and immuno-precipitation analysis revealed that Unr interacted with PABP in an RNA-independent manner, which identified Unr as a novel PABP-interacting protein. Furthermore, the Unr interacting domain in PABP was characterized. In vivo mRNA decay experiments demonstrated a role for Unr-PABP interaction in mCRD-mediated mRNA decay. In conclusion, the findings of this study provide the first evidence that Unr plays a key role in mCRD-mediated mRNA decay. It is proposed that Unr is recruited by mCRD to initiate the formation of a dynamic mRNP complex for communicating with poly(A) tail through PABP. This unique mRNP complex may couple translation to mRNA decay, and perhaps to recruit the responsible nuclease for deadenylation. ^