14 resultados para Uterus.

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diethylstilbestrol (DES) exposed women are well known to be at increased risk of gynecologic cancers and infertility. Infertility may result from DES associated abnormalities in the shape of women's uteri, yet little research has addressed the effect of uterine abnormalities on risk of infertility and reproductive tract infection. Changes in uterine shape may also influence the risk of autoimmune disease and women's subsequent mental health. A sample of consenting women exposed in utero to hormone who were recruited into the DESAD project, underwent hysterosalpingogram (HSG) from 1978 to 1984. These women also completed a comprehensive health questionnaire in 1994 which included women's self-reports of chronic conditions. HSG data were used to categorize uterine shape abnormalities as arcuate shape, hypoplastic, wide lower segment, and constricted. Women were recruited from two of the four DESAD study sites in Houston (Baylor) and Minnesota (Mayo). All women were DES-exposed. Adjusted relative risk estimates were calculated comparing the range of abnormal uterine shaped to women with normal shaped uteri for each of the four outcomes: infertility, reproductive tract infection, autoimmune disease and depressive symptoms. Only the arcuate shape (n=80) was associated with a higher risk of infertility (relative risk [RR]= 1.53, 95% CI = 1.09, 2.15) as well as reproductive tract infection (RR= 1.74, 95% CI = 1.11, 2.73). In conclusion, DES-associated arcuate shaped uteri appeared to be associated with the higher risk of a reproductive tract infection and infertility while no other abnormal uterine shapes were associated with these two outcomes.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through estrogen (E2)/ xenoestrogen inducedrapid ER signaling, which modifies the histone methyltransferase Enhancer of Zeste homolog 2 (EZH2) via activation of the PI3K/AKT pathway. We further hypothesized that there is a xenostrogen-specific effect on this pathway altering patterns of histone modification, DNA methylation and gene expression. In addition to our novel finding that E2/DES-induced phosphorylation of EZH2 by AKT reduces the levels of H3K27me3 in vitro and in vivo, this work demonstrates in vivo that a brief neonatal exposure to GEN, in contrast to BPA, activates the PI3K/AKT pathway to regulate EZH2 and decreases H3K27me3 levels in the neonatal uterus. Given that H3K27me3 is a repressive mark that has been shown to result in DNA methylation and gene silencing we investigated the methylation of developmentally reprogrammed genes. In support of this evidence, we show that neonatal DES exposure in comparison to VEH, leads to hypomethylation of the promoter of a developmentally reprogrammed gene, Gria2, that become hyper-responsive to estrogen in the adult myometrium indicating vi that DES exposure alter gene expression via chromatin remodeling and loss of DNA methylation. In the adult uterus, GEN and BPA exposure developmentally reprogrammed expression of estrogen-responsive genes in a manner opposite of one another, correlating with our previous data. Furthermore, the ability of GEN and BPA to developmental reprogram gene expression correlated with tumor incidence and multiplicity. These data show that xenoestrogens have unique effects on the activation of non-genomic signaling in the developing uterus that promotes epigenetic and genetic alterations, which are predictive of developmental reprogramming and correlate with their ability to modulate hormone-dependent tumor development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer antigen 125 (CA125) is a blood biomarker that is routinely used to monitor the progression of human epithelial ovarian cancer (EOC) and is encoded by MUC16, a member of the mucin gene family. The biological function of CA125/MUC16 and its potential role in EOC are poorly understood. Here we report the targeted disruption of the of the Muc16 gene in the mouse. To generate Muc16 knockout mice, 6.0 kb was deleted that included the majority of exon 3 and a portion of intron 3 and replaced with a lacZ reporter cassette. Loss of Muc16 protein expression suggests that Muc16 homozygous mutant mice are null mutants. Muc16 homozygous mutant mice are viable, fertile, and develop normally. Histological analysis shows that Muc16 homozygous mutant tissues are normal. By the age of 1 year, Muc16 homozygous mutant mice appear normal. Downregulation of transcripts from another mucin gene (Muc1) was detected in the Muc16 homozygous mutant uterus. Lack of any prominent abnormal phenotype in these Muc16 knockout mice suggests that CA125/MUC16 is not required for normal development or reproduction. These knockout mice provide a unique platform for future studies to identify the role of CA125/MUC16 in organ homeostasis and ovarian cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dicer encodes a riboendonuclease required for microRNA biosynthesis. Dicer was inactivated in Müllerian duct mesenchyme-derived tissues of the reproductive tract of the mouse, using an Amhr2-Cre allele. Although Amhr2-Cre; Dicer conditional mutant males appeared normal and were fertile, mutant females were infertile. In adult mutant females, there was a reduction in the size of the oviducts and uterine horns. The oviducts were less coiled compared to controls and cysts formed at the isthmus near the uterotubal junction. Unfertilized, degenerate oocytes were commonly found within these cysts, indicating a defect in embryo transit. Beads transferred into the mutant oviduct failed to migrate into the uterus. In addition, blastocysts transferred directly into the mutant uterus did not result in pregnancy. Histological analysis demonstrated that the mutant uterus contained less glandular tissue and often the few glands that remained were found within the myometrium, an abnormal condition known as adenomyosis. In adult mutants, there was ectopic expression of Wnt4 and Wnt5a in the luminal epithelium (LE) and glandular epithelium (GE) of the uterus, and Wnt11 was ectopically expressed in GE. These results demonstrate that Dicer is necessary for postnatal differentiation of Müllerian duct mesenchyme-derived tissues of the female reproductive tract, suggesting that microRNAs are important regulators of female reproductive tract development and fertility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies from our lab have established that large molecular weight mucin glycoproteins are major apically-disposed components of mouse uterine epithelial cells in vitro (Valdizan et al., (1992) J. Cell. Physiol. 151:451-465). The present studies demonstrate that Muc-1 represents one of the apically-disposed mucin glycoproteins of mouse uterine epithelia, and that Muc-1 protein and mRNA expression are regulated in the peri-implantation stage mouse uterus by ovarian steroids. Muc-1 expression is high in the proestrous and estrous stages, and decreases during diestrous. Both Muc-1 protein and mRNA levels decline to barely detectable levels by day 4 of pregnancy, i.e., prior to the time of blastocyst attachment. In contrast, Muc-1 expression in the cervix and vagina is maintained during this same period. Delayed implantation was established in pregnant mice by ovariectomy and maintained by administration of exogenous progesterone. Initiation of implantation was triggered by coinjection of progesterone maintained mice with a nidatory dose of 17$\beta$-estradiol. Muc-1 levels in the uterine epithelia of progesterone maintained mice declined to similar low levels as observed on day 4 of normal pregnancy. Coinjection of estradiol did not alter Muc-1 expression suggesting that down-regulation of Muc-1 is a progesterone dominated event. This was confirmed in ovariectomized, non-pregnant mice which displayed stimulation of Muc-1 expression following 6 hr of estradiol injection. Estradiol stimulated Muc-1 expression was inhibited by the pure antiestrogen, ICI 164,384. While progesterone alone had no effect on Muc-1 expression, it antagonized estradiol action in this regard. Injection of pregnant mice with the antiprogestin, RU 486, a known implantation inhibitor, on day 3 of pregnancy restored high level expression of Muc-1 mRNA on day 4, indicating that down-regulation of Muc-1 is progesterone receptor-mediated. Muc-1 appears to function as an anti-adhesive molecule at the apical cell surface of mouse uterine epithelial cells. Treatment of polarized cultures of mouse uterine epithelial cells with O-sialoglycoprotein endopeptidase reduced mucin expression in vitro, by about 50%, and converted polarized uterine epithelia to a functionally receptive state. Similarly, ablation of Muc-1 in Muc-1 null mice resulted in polarized uterine epithelia that were functionally receptive as compared to their wild-type counterparts in vitro. Collectively, these data indicate that Muc-1 and other mucins function as anti-adhesive molecules and that reduction or removal of these molecules is a prerequisite for the generation of a receptive uterine state. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The differentiation of the reproductive organs is an essential developmental process required for the proper transmission of the genetic material. Müllerian inhibiting substance (MIS) is produced by testes and is necessary for the regression of the Müllerian ducts: the anlagen of the uterus, fallopian tubes and cervix. In vitro and standard transgenic mouse studies indicate that the nuclear hormone receptor Steroidogenic factor 1 (SF-1) and the transcription factor SOX9 play an essential role in the regulation of Mis. To test this hypothesis, mutations in the endogenous SF-1 and SOX9 binding sites in the mouse Mis promoter were introduced by gene targeting in embryonic stem (ES) cells. In disagreement with cell culture and transgenic mouse studies, male mice homozygous for the mutant SF-1 binding site correctly initiated Mis transcription in the fetal testes, although at significantly reduced levels. Surprisingly, sufficient Mis was produced for complete elimination of the Müllerian duct system. However, when the SF-1 binding site mutation was combined with an Mis -null allele, the further decrease in Mis levels led to a partial retention of uterine tissue, but only at a distance from the testes. In contrast, males homozygous for the mutant SOX9 binding site did not initiate Mis transcription, resulting in pseudohermaphrodites with a uterus and oviducts. These studies suggest an essential role for SOX9 in the initiation of Mis transcription, whereas SF-1 appears to act as a quantitative regulator of Mis transcript levels perhaps for influencing non-Müllerian duct tissues. ^ The Mis type II receptor, a member of the TGF- b superfamily, is also required for the proper regression of the Müllerian ducts. Mis type II receptor-deficient human males and their murine counterparts develop as pseudohermaphrodites. A lacZ reporter cassette was introduced into the mouse Mis type II receptor gene, by homologous recombination in ES cells. Expression studies, based on b -galactosidase activity, show marked expression of the MIS type II receptor in the postnatal Sertoli cells of the testis as well as in the prenatal and postnatal granulosa cells of the ovary. Expression is also seen in the mesenchymal cells surrounding the Müllerian duct and in the longitudinal muscle layer of the uterus. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell signaling by nitric oxide (NO) through soluble guanylyl cyclase (sGC) and cGMP production regulates physiological responses such as smooth muscle relaxation, neurotransmission, and cell growth and differentiation. Although the NO receptor, sGC, has been studied extensively at the protein level, information on regulation of the sGC genes remains elusive. In order to understand the molecular mechanisms involved at the level of gene expression, cDNA and genomic fragments of the murine sGCα1 subunit gene were obtained through library screenings. Using the acquired clones, the sGCα 1 gene structure was determined following primer extension, 3 ′RACE and intron/exon boundary analyses. The basal activity of several 5′-flanking regions (putative promoter regions) for both the α1 and β1 sGC subunits were determined following their transfection into mouse N1E-115 neuroblastoma and rat RENE1Δ14 uterine epithelial cells using a luciferase reporter plasmid. Using the sGC sequences, real-time RT-PCR assays were designed to measure mRNA levels of the sGC α1 and β1 genes in rat, mouse and human. Subsequent studies found that uterine sGC mRNA and protein levels decreased rapidly in response to 17β-estradiol (estrogen) in an in vivo rat model. As early as 1 hour following treatment, mRNA levels of both sGC mRNAs decreased, and reached their lowest level of expression after 3 hours. This in vivo response was completely blocked by the pure estrogen receptor antagonist, ICI 182,780, was not seen in several other tissues examined, did not occur in response to other steroid hormones, and was due to a post-transcriptional mechanism. Additional studies ex vivo and in various cell culture models suggested that the estrogen-mediated decreased sGC mRNA expression did not require signals from other tissues, but may require cell communication or paracrine factors between different cell types within the uterus. Using chemical inhibitors and molecular targeting in other related studies, it was revealed that c-Jun-N-terminal kinase (JNK) signaling was responsible for decreased sGC mRNA expression in rat PC12 and RFL-6 cells, two models previously determined to exhibit rapid decreased sGC mRNA expression in response to different stimuli. To further investigate the post-transcriptional gene regulation, the full length sGCα1 3′-untranslated region (3′UTR) was cloned from rat uterine tissue and ligated downstream of the rabbit β-globin gene and expressed as a chimeric mRNA in the rat PC12 and RFL-6 cell models. Expression studies with the chimeric mRNA showed that the sGCα 1 3′UTR was not sufficient to mediate the post-transcriptional regulation of its mRNA by JNK or cAMP signaling in PC12 and RFL-6 cells. This study has provided numerous valuable tools for future studies involving the molecular regulation of the sGC genes. Importantly, the present results identified a novel paradigm and a previously unknown signaling pathway for sGC mRNA regulation that could potentially be exploited to treat diseases such as uterine cancers, neuronal disorders, hypertension or various inflammatory conditions. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological studies have led to the hypothesis that major risk factors for developing diseases such as hypertension, cardiovascular disease and adult-onset diabetes are established during development. This developmental programming hypothesis proposes that exposure to an adverse stimulus or insult at critical, sensitive periods of development can induce permanent alterations in normal physiological processes that lead to increased disease risk later in life. For cancer, inheritance of a tumor suppressor gene defect confers a high relative risk for disease development. However, these defects are rarely 100% penetrant. Traditionally, gene-environment interactions are thought to contribute to the penetrance of tumor suppressor gene defects by facilitating or inhibiting the acquisition of additional somatic mutations required for tumorigenesis. The studies presented herein identify developmental programming as a distinctive type of gene-environment interaction that can enhance the penetrance of a tumor suppressor gene defect in adult life. Using rats predisposed to uterine leiomyoma due to a germ-line defect in one allele of the tuberous sclerosis complex 2 (Tsc-2) tumor suppressor gene, these studies show that early-life exposure to the xenoestrogen, diethylstilbestrol (DES), during development of the uterus increased tumor incidence, multiplicity and size in genetically predisposed animals, but failed to induce tumors in wild-type rats. Uterine leiomyomas are ovarian-hormone dependent tumors that develop from the uterine myometrium. DES exposure was shown to developmentally program the myometrium, causing increased expression of estrogen-responsive genes prior to the onset of tumors. Loss of function of the normal Tsc-2 allele remained the rate-limiting event for tumorigenesis; however, tumors that developed in exposed animals displayed an enhanced proliferative response to ovarian steroid hormones relative to tumors that developed in unexposed animals. Furthermore, the studies presented herein identify developmental periods during which target tissues are maximally susceptible to developmental programming. These data suggest that exposure to environmental factors during critical periods of development can permanently alter normal physiological tissue responses and thus lead to increased disease risk in genetically susceptible individuals. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While there is considerable information on the molecular aberrations associated with the development of endometrial cancer, very little is known of changes in gene expression associated with its antecedent premalignant condition, endometrial hyperplasia. In order to address this, we have compared the level of expression of components of the IGF-I signaling pathway in human endometrial hyperplasia to their level of expression in both the normal pre-menopausal endometrium and endometrial carcinoma. We have also characterized the molecular characteristics of endometrial hyperplasia as it occurs in a murine model of hormone-dependent tumorigenesis of the female reproductive tract. ^ There was a significant and selective increase in the expression of the IGF-I Receptor (IGF-IR) in both human hyperplasia and carcinoma as compared to the normal endometrium. The receptor was also activated, as judged by increased tyrosine phosphorylation. In addition, in hyperplasia and carcinoma there is activation of the downstream component Akt. The expression of the PTEN tumor suppressor is decreased in a subset of subjects with hyperplasia and in all of the carcinomas. The simultaneous loss of PTEN expression and increased IGF-IR activation in the hyperplastic endometrium was associated with an increased incidence of endometrial carcinoma elsewhere within the uterus. In the rodent hyperplasia, there was a significant increase in the expression and activation of Akt that appears to be attributable to a marked increase in the expression of IGF-II. ^ Our studies have demonstrated the pathologic proliferation of both the human and rodent endometrium is linked to a marked activation of the Akt pathway. However the cause of this dysregulation is different in the human disease and the animal model. In rodents, hyperplasia is linked to increased expression of one of the ligands of the IGF-IR, IGF-II. In humans the IGF-I receptor itself is upregulated and activated. Additional activation of the Akt pathway via the suppression of PTEN activity, results in conditions that are associated with the marked increase in the probability of developing endometrial cancer. Our data suggests that increased activity of the IGF-I pathway plays the key role in the hyperproliferative state characteristic of endometrial hyperplasia and cancer.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternal ingestion of high concentrations of radon-222 (Rn-222) in drinking during pregnancy may pose a significant radiation hazard to the developing embryo. The effects of ionizing radiation to the embryo and fetus have been the subject of research, analyses, and the development of a number of radiation dosimetric models for a variety of radionuclides. Currently, essentially all of the biokinetic and dosimetric models that have been developed by national and international radiation protection agencies and organizations recommend calculating the dose to the mother's uterus as a surrogate for estimating the dose to the embryo. Heretofore, the traditional radiation dosimetry models have neither considered the embryo a distinct and rapidly developing entity, the fact that it is implanted in the endometrial layer of the uterus, nor the physiological interchanges that take place between maternal and embryonic cells following the implantation of the blastocyst in the endometrium. The purpose of this research was to propose a new approach and mathematical model for calculating the absorbed radiation dose to the embryo by utilizing a semiclassical treatment of alpha particle decay and subsequent scattering of energy deposition in uterine and embryonic tissue. The new approach and model were compared and contrasted with the currently recommended biokinetic and dosimetric models for estimating the radiation dose to the embryo. The results obtained in this research demonstrate that the estimated absorbed dose for an embryo implanted in the endometrial layer of the uterus during the fifth week of embryonic development is greater than the estimated absorbed dose for an embryo implanted in the uterine muscle on the last day of the eighth week of gestation. This research provides compelling evidence that the recommended methodologies and dosimetric models of the Nuclear Regulatory Commission and International Commission on Radiological Protection employed for calculating the radiation dose to the embryo from maternal intakes of radionuclides, including maternal ingestion of Rn-222 in drinking water would result in an underestimation of dose. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer antigen 125 (CA125) is a tumor antigen that is routinely used to monitor the disease progress and the outcome of treatment in ovarian cancer patients. Elevated serum levels of CA125 are detected in over 80% of epithelial ovarian cancer patients. CA125 is a high molecular weight (>1M Dalton) mucin-type glycoprotein encoded by the MUC16 gene on human chromosome 19. Although MUC16 has served as the best serum marker for monitoring growth of ovarian cancer, roles for MUC16 in normal physiology and ovarian cancer are largely unknown. To understand the biological functions of MUC16, I characterized a mouse Muc16 homolog on chromosome 9 by means of expression pattern profiling, phenotype analysis of Muc16 knockout mice, and in vitro and in vivo studies of Muc16 null transformed ovarian surface epithelial (OSE) cells. ^ The mouse Muc16 homolog shares a conserved genomic structure with human MUC16. In addition to being expressed in mouse ovarian cancer, mouse Muc16 mRNA and protein were expressed in the mesothelia covering the heart, lung, ovary, oviduct, spleen, testis, and uterus. The conserved genomic structure and expression pattern of mouse Muc16 to human MUC16 suggests that mouse Muc16 is the ortholog of human MUC16. To understand the biological functions of Muc16, I generated Muc16 knockout mice. Muc16 knockout mice were viable, fertile and normal by one year of age. However, between 18 and 24 months of age, Muc16 knockout mice developed various tissue abnormalities such as ovarian cysts and tumors of the liver and other peritoneal organs. To determine the role of MUC16 in ovarian cancer progression, I established Muc16 null transformed ovarian surface epithelial (OSE) cell lines, following the same method to develop mouse model of epithelial ovarian cancer (Orsulic et al., 2002). Loss of Muc16 did not affect cell morphology, cell proliferation rate, or tumorigenic potential. However, Muc16-null OSE cells showed decreased attachment to extracellular matrix proteins as well as to primary mouse peritoneal mesothelial cells. Peritoneal mesothelia are the most frequent implantation sites of ovarian cancer. Furthermore, a pilot transplantation assay suggests that Muc16 null transformed OSE cells formed less disseminated tumors in the peritoneal cavity compared to wild-type OSE cells. ^ In conclusion, these results demonstrate that MUC16 is not required for normal mouse development or reproduction, but plays important roles in tissue homeostasis, ovarian cancer cell adhesion and dissemination. This study provides the first in vivo evidence of the roles of MUC16 in development, as well as ovarian cancer progression and dissemination. These studies offer valuable insights into possible mechanisms of ovarian cancer development and potential molecular targets for ovarian cancer treatment. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular Ehlers-Danlos syndrome is a heritable disease of connective tissue caused by mutations in COL3A1, conferring a tissue deficiency of type III collagen. Cutaneous wounds heal poorly in these patients, and they are susceptible to spontaneous and catastrophic rupture of expansible hollow organs like the gut, uterus, and medium-sized to large arteries, which leads to premature death. Although the predisposition for organ rupture is often attributed to inherent tissue fragility, investigation of arteries from a haploinsufficient Col3a1 mouse model (Col3a1+/-) demonstrates that mutant arteries withstand even supraphysiologic pressures comparably to wild-type vessels. We hypothesize that injury that elicits occlusive thrombi instead unmasks defective thrombus resolution resulting from impaired production of type III collagen, which causes deranged remodeling of matrix, persistent inflammation, and dysregulated behavior by resident myofibroblasts, culminating in the development of penetrating neovascular channels that disrupt the mechanical integrity of the arterial wall. Vascular injury and thrombus formation following ligation of the carotid artery reveals an abnormal persistence and elevated burden of occlusive thrombi at 21 post-operative days in vessels from Col3a1+/- mice, as opposed to near complete resolution and formation of a patent and mature neointima in wild-type mice. At only 14 days, both groups harbor comparable burdens of resolving thrombi, but wild-type mice increase production of type III collagen in actively resolving tissues, while mutant mice do not. Rather, thrombi in mutant mice contain higher burdens of macrophages and proliferative myofibroblasts, which persist through 21 days while wild-type thrombi, inflammatory cells, and proliferation all regress. At the same time that increased macrophage burdens were observed at 14 and 21 days post ligation, the medial layer of mutant arterial walls concurrently harbored a significantly higher incidence of penetrating neovessels compared with those in wild-type mice. To assess whether limited type III collagen production alters myofibroblast behavior, fibroblasts from vEDS patients with COL3A1 missense mutations were seeded into three-dimensional fibrin gel constructs and stimulated with transforming growth factor-β1 to initiate myofibroblast differentiation. Although early signaling events occur similarly in all cell lines, late extracellular matrix- and mechanically-regulated events like transcriptional upregulation of type I and type III collagen secretion are delayed in mutant cultures, while transcription of genes encoding intracellular contractile machinery is increased. Sophisticated imaging of collagen synthesized de novo by resident myofibroblasts visualizes complex matrix reorganization by control cells but only meager remodeling by COL3A1 mutant cells, concordant with their compensatory contraction to maintain tension in the matrix. Finally, administration of immunosuppressive rapamycin to mice following carotid ligation sufficiently halts the initial inflammatory phase of thrombus resolution and fully prevents both myofibroblast migration into the thrombus and the differential development of neovessels between mutant and wild-type mice, suggesting that pathological defects in mutant arteries develop secondarily to myofibroblast dysfunction and chronic inflammatory stimulation, rather than as a manifestation of tissue fragility. Together these data establish evidence that pathological defects in the vessel wall architecture develop in mutant arteries as sequelae to abnormal healing and remodeling responses activated by arterial injury. Thus, these data support the hypothesis that events threatening the integrity of type III collagen-deficient vessels develop not as a result of inherent tissue weakness and fragility at baseline but instead as an episodic byproduct of abnormally persistent granulation tissue and fibroproliferative intravascular remodeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we investigated the regulation of the nuclear proto-oncogene, c-fos by estrogen in vivo. In the uterus, estrogen causes a rapid, dramatic and transient induction of c-fos mRNA and this occurs by transcriptional activation. We have discovered a previously unrecognized regulatory mechanism by which fos becomes desensitized to estrogen following the transient induction. We investigated three aspects of this desensitization: (1) the kinetics and general characteristics of the phenomenon; (2) the molecular mechanism of the desensitization; and (3) the relationship of desensitization to estrogen stimulated DNA synthesis. The desensitization occurs between 3-24 hours after initial hormonal stimulation and is reversible within 72 hours. The desensitization is not species specific, in that it occurs in both the rat and mouse. The desensitization also occurs in at least two estrogen responsive tissues, the uterus and vagina. The desensitization is not unique to c-fos, since both c-myc and c-jun show similar patterns of desensitization. However, the desensitization is not observed with creatine kinase B (CKB), indicating that not all estrogen inducible genes become desensitized. In the second general area, we determined the desensitization is at the transcriptional level. The desensitization is homologous, but not heterologous, since estrogen induction does not desensitize c-fos to other agents. Other studies show that the desensitization is not due to the lack of functional estrogen receptors. Taken together, these findings suggest that the desensitization occurs at the level of the estrogen responsive element. In the third major area, we demonstrated that the desensitization appears to be related to estrogen induced DNA synthesis. Support for this suggestion comes from the observation that short acting estrogens which induce fos, but not DNA synthesis, do not produce desensitization. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulation of uterine quiescence involves the integration of the signaling pathways regulating uterine contraction and relaxation. Uterine contractants increase intracellular calcium through receptor/GαqPLC coupling, resulting in contraction of the myometrium. Elevation of cAMP concentration has been correlated with relaxation of the myometrium. However, the mechanism of cAMP action in the uterus is unclear. ^ Both endogenous and exogenous increases in cAMP inhibited oxytocin-stimulated phosphatidylinositide turnover in an immortalized pregnant human myometrial cell line (PHM1-41). This inhibition was reversed by cAMP-dependent protein kinase (PKA) inhibitors, suggesting the involvement of PKA. cAMP inhibited phosphatidyinositide turnover stimulated by different agonists in different cell lines. These data suggest that the cAMP inhibitory mechanism is neither cell nor receptor dependent, and inhibits Gαq/PLCβ1 and PLCβ3 coupling. ^ The subcellular localization of PKA occurs via PKA binding to A-Kinase-Anchoring-Proteins (AKAP), and peptides that inhibit this association have been developed (S-Ht31). S-Ht31 blocked cAMP-stimulated PKA activity and decreased PKA concentration in PHM1-41 cell plasma membranes. S-Ht31 reversed the ability of CPT-cAMP, forskolin and relaxin to inhibit phosphatidylinositide turnover in PHM1-41 cells. Overlay analysis of both PHM1-41 cell and nonpregnant rat myometrium found an AKAPs of 86 kDa and 150 kDa associated with the plasma membrane, respectively. These data suggest that PKA anchored to the plasma membrane via AKAP150/PKA anchoring is involved in the cAMP inhibitory mechanism. ^ CPT-cAMP and isoproterenol inhibited phosphatidylinositide turnover in rat myometrium from days 12 through 20 of gestation. In contrast, neither agent was effective in the 21 day pregnant rat myometrium. The decrease in the cAMP inhibitory mechanism was correlated with a decrease in PKA and an increase in protein phosphatase 2B (PP2B) concentration in rat myometrial plasma membranes on day 21 of gestation. In myometrial total cell homogenates, both PKA and PP2B concentration increased on day 21. S-Ht31 inhibited cAMP inhibition of phosphatidylinositide turnover in day 19 pregnant rat myometrium. Both PKA and PP2B coimmunoprecipitated with an AKAP150 in a gestational dependent manner, suggesting this AKAP localizes PKA and PP2B to the plasma membrane. ^ These data presented demonstrate the importance of the cAMP inhibitory mechanism in regulating uterine contractility. ^