7 resultados para Uterus -- Physiology

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several species, a family of nuclear receptors, the peroxisome proliferator-activated receptors (PPARs) composed of three isotypes, is expressed in somatic cells and germ cells of the ovary as well as the testis. Invalidation of these receptors in mice or stimulation of these receptors in vivo or in vitro showed that each receptor has physiological roles in the gamete maturation or the embryo development. In addition, synthetic PPAR gamma ligands are recently used to induce ovulation in women with polycystic ovary disease. These results reveal the positive actions of PPAR in reproduction. On the other hand, xenobiotics molecules (in herbicides, plasticizers, or components of personal care products), capable of activating PPAR, may disrupt normal PPAR functions in the ovary or the testis and have consequences on the quality of the gametes and the embryos. Despite the recent data obtained on the biological actions of PPARs in reproduction, relatively little is known about PPARs in gametes and embryos. This review summarizes the current knowledge on the expression and the function of PPARs as well as their partners, retinoid X receptors (RXRs), in germ cells and preimplantation embryos. The effects of natural and synthetic PPAR ligands will also be discussed from the perspectives of reproductive toxicology and assisted reproductive technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies from our lab have established that large molecular weight mucin glycoproteins are major apically-disposed components of mouse uterine epithelial cells in vitro (Valdizan et al., (1992) J. Cell. Physiol. 151:451-465). The present studies demonstrate that Muc-1 represents one of the apically-disposed mucin glycoproteins of mouse uterine epithelia, and that Muc-1 protein and mRNA expression are regulated in the peri-implantation stage mouse uterus by ovarian steroids. Muc-1 expression is high in the proestrous and estrous stages, and decreases during diestrous. Both Muc-1 protein and mRNA levels decline to barely detectable levels by day 4 of pregnancy, i.e., prior to the time of blastocyst attachment. In contrast, Muc-1 expression in the cervix and vagina is maintained during this same period. Delayed implantation was established in pregnant mice by ovariectomy and maintained by administration of exogenous progesterone. Initiation of implantation was triggered by coinjection of progesterone maintained mice with a nidatory dose of 17$\beta$-estradiol. Muc-1 levels in the uterine epithelia of progesterone maintained mice declined to similar low levels as observed on day 4 of normal pregnancy. Coinjection of estradiol did not alter Muc-1 expression suggesting that down-regulation of Muc-1 is a progesterone dominated event. This was confirmed in ovariectomized, non-pregnant mice which displayed stimulation of Muc-1 expression following 6 hr of estradiol injection. Estradiol stimulated Muc-1 expression was inhibited by the pure antiestrogen, ICI 164,384. While progesterone alone had no effect on Muc-1 expression, it antagonized estradiol action in this regard. Injection of pregnant mice with the antiprogestin, RU 486, a known implantation inhibitor, on day 3 of pregnancy restored high level expression of Muc-1 mRNA on day 4, indicating that down-regulation of Muc-1 is progesterone receptor-mediated. Muc-1 appears to function as an anti-adhesive molecule at the apical cell surface of mouse uterine epithelial cells. Treatment of polarized cultures of mouse uterine epithelial cells with O-sialoglycoprotein endopeptidase reduced mucin expression in vitro, by about 50%, and converted polarized uterine epithelia to a functionally receptive state. Similarly, ablation of Muc-1 in Muc-1 null mice resulted in polarized uterine epithelia that were functionally receptive as compared to their wild-type counterparts in vitro. Collectively, these data indicate that Muc-1 and other mucins function as anti-adhesive molecules and that reduction or removal of these molecules is a prerequisite for the generation of a receptive uterine state. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The differentiation of the reproductive organs is an essential developmental process required for the proper transmission of the genetic material. Müllerian inhibiting substance (MIS) is produced by testes and is necessary for the regression of the Müllerian ducts: the anlagen of the uterus, fallopian tubes and cervix. In vitro and standard transgenic mouse studies indicate that the nuclear hormone receptor Steroidogenic factor 1 (SF-1) and the transcription factor SOX9 play an essential role in the regulation of Mis. To test this hypothesis, mutations in the endogenous SF-1 and SOX9 binding sites in the mouse Mis promoter were introduced by gene targeting in embryonic stem (ES) cells. In disagreement with cell culture and transgenic mouse studies, male mice homozygous for the mutant SF-1 binding site correctly initiated Mis transcription in the fetal testes, although at significantly reduced levels. Surprisingly, sufficient Mis was produced for complete elimination of the Müllerian duct system. However, when the SF-1 binding site mutation was combined with an Mis -null allele, the further decrease in Mis levels led to a partial retention of uterine tissue, but only at a distance from the testes. In contrast, males homozygous for the mutant SOX9 binding site did not initiate Mis transcription, resulting in pseudohermaphrodites with a uterus and oviducts. These studies suggest an essential role for SOX9 in the initiation of Mis transcription, whereas SF-1 appears to act as a quantitative regulator of Mis transcript levels perhaps for influencing non-Müllerian duct tissues. ^ The Mis type II receptor, a member of the TGF- b superfamily, is also required for the proper regression of the Müllerian ducts. Mis type II receptor-deficient human males and their murine counterparts develop as pseudohermaphrodites. A lacZ reporter cassette was introduced into the mouse Mis type II receptor gene, by homologous recombination in ES cells. Expression studies, based on b -galactosidase activity, show marked expression of the MIS type II receptor in the postnatal Sertoli cells of the testis as well as in the prenatal and postnatal granulosa cells of the ovary. Expression is also seen in the mesenchymal cells surrounding the Müllerian duct and in the longitudinal muscle layer of the uterus. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diethylstilbestrol (DES) exposed women are well known to be at increased risk of gynecologic cancers and infertility. Infertility may result from DES associated abnormalities in the shape of women's uteri, yet little research has addressed the effect of uterine abnormalities on risk of infertility and reproductive tract infection. Changes in uterine shape may also influence the risk of autoimmune disease and women's subsequent mental health. A sample of consenting women exposed in utero to hormone who were recruited into the DESAD project, underwent hysterosalpingogram (HSG) from 1978 to 1984. These women also completed a comprehensive health questionnaire in 1994 which included women's self-reports of chronic conditions. HSG data were used to categorize uterine shape abnormalities as arcuate shape, hypoplastic, wide lower segment, and constricted. Women were recruited from two of the four DESAD study sites in Houston (Baylor) and Minnesota (Mayo). All women were DES-exposed. Adjusted relative risk estimates were calculated comparing the range of abnormal uterine shaped to women with normal shaped uteri for each of the four outcomes: infertility, reproductive tract infection, autoimmune disease and depressive symptoms. Only the arcuate shape (n=80) was associated with a higher risk of infertility (relative risk [RR]= 1.53, 95% CI = 1.09, 2.15) as well as reproductive tract infection (RR= 1.74, 95% CI = 1.11, 2.73). In conclusion, DES-associated arcuate shaped uteri appeared to be associated with the higher risk of a reproductive tract infection and infertility while no other abnormal uterine shapes were associated with these two outcomes.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer antigen 125 (CA125) is a tumor antigen that is routinely used to monitor the disease progress and the outcome of treatment in ovarian cancer patients. Elevated serum levels of CA125 are detected in over 80% of epithelial ovarian cancer patients. CA125 is a high molecular weight (>1M Dalton) mucin-type glycoprotein encoded by the MUC16 gene on human chromosome 19. Although MUC16 has served as the best serum marker for monitoring growth of ovarian cancer, roles for MUC16 in normal physiology and ovarian cancer are largely unknown. To understand the biological functions of MUC16, I characterized a mouse Muc16 homolog on chromosome 9 by means of expression pattern profiling, phenotype analysis of Muc16 knockout mice, and in vitro and in vivo studies of Muc16 null transformed ovarian surface epithelial (OSE) cells. ^ The mouse Muc16 homolog shares a conserved genomic structure with human MUC16. In addition to being expressed in mouse ovarian cancer, mouse Muc16 mRNA and protein were expressed in the mesothelia covering the heart, lung, ovary, oviduct, spleen, testis, and uterus. The conserved genomic structure and expression pattern of mouse Muc16 to human MUC16 suggests that mouse Muc16 is the ortholog of human MUC16. To understand the biological functions of Muc16, I generated Muc16 knockout mice. Muc16 knockout mice were viable, fertile and normal by one year of age. However, between 18 and 24 months of age, Muc16 knockout mice developed various tissue abnormalities such as ovarian cysts and tumors of the liver and other peritoneal organs. To determine the role of MUC16 in ovarian cancer progression, I established Muc16 null transformed ovarian surface epithelial (OSE) cell lines, following the same method to develop mouse model of epithelial ovarian cancer (Orsulic et al., 2002). Loss of Muc16 did not affect cell morphology, cell proliferation rate, or tumorigenic potential. However, Muc16-null OSE cells showed decreased attachment to extracellular matrix proteins as well as to primary mouse peritoneal mesothelial cells. Peritoneal mesothelia are the most frequent implantation sites of ovarian cancer. Furthermore, a pilot transplantation assay suggests that Muc16 null transformed OSE cells formed less disseminated tumors in the peritoneal cavity compared to wild-type OSE cells. ^ In conclusion, these results demonstrate that MUC16 is not required for normal mouse development or reproduction, but plays important roles in tissue homeostasis, ovarian cancer cell adhesion and dissemination. This study provides the first in vivo evidence of the roles of MUC16 in development, as well as ovarian cancer progression and dissemination. These studies offer valuable insights into possible mechanisms of ovarian cancer development and potential molecular targets for ovarian cancer treatment. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular Ehlers-Danlos syndrome is a heritable disease of connective tissue caused by mutations in COL3A1, conferring a tissue deficiency of type III collagen. Cutaneous wounds heal poorly in these patients, and they are susceptible to spontaneous and catastrophic rupture of expansible hollow organs like the gut, uterus, and medium-sized to large arteries, which leads to premature death. Although the predisposition for organ rupture is often attributed to inherent tissue fragility, investigation of arteries from a haploinsufficient Col3a1 mouse model (Col3a1+/-) demonstrates that mutant arteries withstand even supraphysiologic pressures comparably to wild-type vessels. We hypothesize that injury that elicits occlusive thrombi instead unmasks defective thrombus resolution resulting from impaired production of type III collagen, which causes deranged remodeling of matrix, persistent inflammation, and dysregulated behavior by resident myofibroblasts, culminating in the development of penetrating neovascular channels that disrupt the mechanical integrity of the arterial wall. Vascular injury and thrombus formation following ligation of the carotid artery reveals an abnormal persistence and elevated burden of occlusive thrombi at 21 post-operative days in vessels from Col3a1+/- mice, as opposed to near complete resolution and formation of a patent and mature neointima in wild-type mice. At only 14 days, both groups harbor comparable burdens of resolving thrombi, but wild-type mice increase production of type III collagen in actively resolving tissues, while mutant mice do not. Rather, thrombi in mutant mice contain higher burdens of macrophages and proliferative myofibroblasts, which persist through 21 days while wild-type thrombi, inflammatory cells, and proliferation all regress. At the same time that increased macrophage burdens were observed at 14 and 21 days post ligation, the medial layer of mutant arterial walls concurrently harbored a significantly higher incidence of penetrating neovessels compared with those in wild-type mice. To assess whether limited type III collagen production alters myofibroblast behavior, fibroblasts from vEDS patients with COL3A1 missense mutations were seeded into three-dimensional fibrin gel constructs and stimulated with transforming growth factor-β1 to initiate myofibroblast differentiation. Although early signaling events occur similarly in all cell lines, late extracellular matrix- and mechanically-regulated events like transcriptional upregulation of type I and type III collagen secretion are delayed in mutant cultures, while transcription of genes encoding intracellular contractile machinery is increased. Sophisticated imaging of collagen synthesized de novo by resident myofibroblasts visualizes complex matrix reorganization by control cells but only meager remodeling by COL3A1 mutant cells, concordant with their compensatory contraction to maintain tension in the matrix. Finally, administration of immunosuppressive rapamycin to mice following carotid ligation sufficiently halts the initial inflammatory phase of thrombus resolution and fully prevents both myofibroblast migration into the thrombus and the differential development of neovessels between mutant and wild-type mice, suggesting that pathological defects in mutant arteries develop secondarily to myofibroblast dysfunction and chronic inflammatory stimulation, rather than as a manifestation of tissue fragility. Together these data establish evidence that pathological defects in the vessel wall architecture develop in mutant arteries as sequelae to abnormal healing and remodeling responses activated by arterial injury. Thus, these data support the hypothesis that events threatening the integrity of type III collagen-deficient vessels develop not as a result of inherent tissue weakness and fragility at baseline but instead as an episodic byproduct of abnormally persistent granulation tissue and fibroproliferative intravascular remodeling.