3 resultados para United States International Trade Commission
em DigitalCommons@The Texas Medical Center
Resumo:
Embryonic stem cell research is a widely debated topic in modern politics and religion. Differing views on the fetal rights conflict with the rights of an embryo. Those who believe an embryo has the same human qualities as a fetus accordingly believe embryonic stem cell research is unethical because it destroys a potential human life. However, scientists advocate the embryo does not have human qualities and should be used for valuable research in the stem cell field. Stem cell research may lead to vast developments in medical treatments, including cancer and brain conditions and injuries that are currently incurable. ^ The current stem cell policy introduced by President Bush in 2001 in an attempt to balance the moral issues with the need for scientific research has broad negative implications on the furthering of stem cell research. There is a limited diversity of available stem cell lines, there may be constitutional issues, there is an increasing disparity between the public and private research spheres, and the U.S. is struggling to maintain its scientific community. The U.S. must develop a new stem cell research policy that will balance the interest of science and public health with the moral issues that concern the public. ^ The United Kingdom allows researchers great liberty in conducting research, permitting the creation of embryos for the sole purpose of research, while Germany is equally conservative in their laws, as their policies support the philosophy that all embryos deserve the protection of full life. The United States should adopt a policy that takes the "middle ground" approach and permit research on excess embryos created for IVF purposes, rather than simply discarding those potentially valuable research tools. ^
Resumo:
Since the tragic events of September, 11 2001 the United States bioterrorism and disaster preparedness has made significant progress; yet, numerous research studies of nationwide hospital emergency response have found alarming shortcomings in surge capacity and training level of health care personnel in responding to bioterrorism incidents. The primary goals of this research were to assess hospital preparedness towards the threat of bioterrorist agents in the Southwest Region of the United States and provide recommendations for its improvement. Since little formal research has been published on the hospital preparedness of Oklahoma, Arizona, Texas and New Mexico, this research study specifically focused on the measurable factors affecting the respective states' resources and level of preparedness, such as funding, surge capacity and preparedness certification status.^ Over 300 citations of peer-reviewed articles and 17 Web sites were reviewed, of which 57 reports met inclusion criteria. The results of the systematic review highlighted key gaps in the existing literature and the key targets for future research, as well as identified strengths and weaknesses of the hospital preparedness in the Southwest states compared to the national average. ^ Based on the conducted research, currently, the Southwest states hospital systems are unable fully meet presidential preparedness mandates for emergency and disaster care: the staffed beds to 1,000 population value fluctuated around 1,5 across the states; funding for the hospital preparedness lags behind hospital costs by millions of dollars; and public health-hospital partnership in bioterrorism preparedness is quite weak as evident in lack of joint exercises and training. However, significant steps towards it are being made, including on-going hospital preparedness certification by the Joint Commission of Health Organization. Variations in preparedness levels among states signify that geographic location might determine a hospital level of bioterrorism preparedness as well, tending to favor bigger states such as Texas.^ Suggested recommendations on improvement of the hospital bioterrorism preparedness are consistent with the existing literature and include establishment and maintenance of solid partnerships between hospitals and public health agencies, conduction of joint exercises and drills for the health care personnel and key partners, improved state and federal funding specific to bioterrorism preparedness objectives, as well as on-going training of the clinical personnel on recognition of the bioterrorism agents.^
Resumo:
A nested case-control study design was used to investigate the relationship between radiation exposure and brain cancer risk in the United States Air Force (USAF). The cohort consisted of approximately 880,000 men with at least 1 year of service between 1970 and 1989. Two hundred and thirty cases were identified from hospital discharge records with a diagnosis of primary malignant brain tumor (International Classification of Diseases, 9th revision, code 191). Four controls were exactly matched with each case on year of age and race using incidence density sampling. Potential career summary extremely low frequency (ELF) and microwave-radiofrequency (MWRF) radiation exposures were based upon the duration in each occupation and an intensity score assigned by an expert panel. Ionizing radiation (IR) exposures were obtained from personal dosimetry records.^ Relative to the unexposed, the overall age-race adjusted odds ratio (OR) for ELF exposure was 1.39, 95 percent confidence interval (CI) 1.03-1.88. A dose-response was not evident. The same was true for MWRF, although the OR = 1.59, with 95 percent CI 1.18-2.16. Excess risk was not found for IR exposure (OR = 0.66, 45 percent CI 0.26-1.72).^ Increasing socioeconomic status (SES), as identified by military pay grade, was associated with elevated brain tumor risk (officer vs. enlisted personnel age-race adjusted OR = 2.11, 95 percent CI 1.98-3.01, and senior officers vs. all others age-race adjusted OR = 3.30, 95 percent CI 2.0-5.46). SES proved to be an important confounder of the brain tumor risk associated with ELF and MWRF exposure. For ELF, the age-race-SES adjusted OR = 1.28, 95 percent CI 0.94-1.74, and for MWRF, the age-race-SES adjusted OR = 1.39, 95 percent CI 1.01-1.90.^ These results indicate that employment in Air Force occupations with potential electromagnetic field exposures is weakly, though not significantly, associated with increased risk for brain tumors. SES appeared to be the most consistent brain tumor risk factor in the USAF cohort. Other investigators have suggested that an association between brain tumor risk and SES may arise from differential access to medical care. However, in the USAF cohort health care is universally available. This study suggests that some factor other than access to medical care must underlie the association between SES and brain tumor risk. ^