2 resultados para Union Colony of Colorado.
em DigitalCommons@The Texas Medical Center
Resumo:
Trimethylaminuria (TMAU) or Fish odor syndrome is an autosomal recessive disease that is characterized by pungent body odor with subsequent psychosocial complications. There are limited studies of the sequence variants causing TMAU in the literature with most studies describing only one or two patients and lacking genotype-phenotype correlations. Also to date, there is no laboratory in the US or Europe that offers TMA genetic testing on a clinical basis. We have recently validated genetic testing in the University of Colorado DNA Diagnostic Laboratory. We have a database of a few dozen patients with a biochemical diagnosis of TMA at the University of Colorado at Denver Health Sciences Center (UCDHSC) which includes a few patients with the classical form of the disease. We have used the newly established clinical test in our institution to attempt to characterize the genotype (sequence variants including mutations and polymorphisms) of classical TMAU patients and to establish a genotype-phenotype (biochemical and clinical) association. The questionnaire results confirmed most of the previously reported epidemiological findings of TMAU and also indicated that TMAU patients use multiple intervention measures in attempt to control their symptoms with dietary control being most effective. Despite the complexity of intervention, most patients did not have any medical follow up and there was underutilization of specialist care. In a set of our patients, two deleterious mutations were identified in 4/12 patients including a novel T237P sequence variant, while the majority of our patients (8/12) did not reveal any mutations. Some of the latter were double heterozygous for the E158K and E308G polymorphisms which could explain a mild phenotype while others had only the E158K variant which raised the question of undetected mutations. These results indicate that further experiments are needed to further delineate the full mutational spectrum of the FMO3 gene. ^
Resumo:
A colony of rabbits has been developed at the University of Texas Medical School at Houston that is resistant to dietary-induced hypercholesterolemia. The liver of resistant rabbits had higher levels of ($\sp{125}$I) $\beta$-VLDL binding and 3-hydroxy-3-methylglutaryl (HMGCoA) reductase activity, but lower acyl coenzyme A:cholesterol acyltransferase (ACAT) activity than normal rabbits. Direct quantitation of intracellular cholesterol content of the liver revealed that the resistant rabbits had $<$10% of the intracellular free cholesterol present in normal rabbits. Fibroblasts isolated from normal and resistant rabbits exhibited differences in ($\sp{125}$I) LDL binding, HMGCoA reductase activity and ACAT activity that were similar to those found in the liver. No structural differences were found in the LDL receptor of normal and resistant fibroblasts that would account for the increased binding capacity of the resistant cells. The regulation of LDL receptor levels by exogenous oxygenated sterols was similar in normal and resistant fibroblasts. The regulation of LDL receptor binding capacity by LDL was attenuated in the resistant compared to normal fibroblasts, suggesting that the resistant fibroblasts have an alternate pathway for processing lipoprotein-derived cholesterol. Sterol-balance studies revealed that the cholesterol-fed resistant rabbits increased lithocholic acid excretion compared to the basal state, and had higher levels of deoxycholic acid excretion than cholesterol-fed normal rabbits. In addition, the specific activity and mRNA levels of cholesterol 7$\alpha$-hydroxylase (C7$\alpha$H) were higher in resistant rabbits than normal rabbits, suggesting that the increased bile acid excretion was due to an increase in bile acid synthesis. Increased clearance of cholesterol relieves the negative feedback inhibition cholesterol exerts on expression of the LDL receptor. The number of cell surface LDL receptors is then increased in resistant rabbits and allows rapid clearance of lipoproteins from the plasma compartment, thereby reducing plasma cholesterol levels. The low intracellular cholesterol level also relieves the negative feedback inhibition cholesterol exerts on HMGCoA reductase. Increased synthesis of cholesterol from acetate provides cells with cholesterol for bile acid synthesis and/or homeostasis. The activity of ACAT is then decreased due to the flux of cholesterol through the bile acid synthetic pathways. ^