6 resultados para Understanding by Design
em DigitalCommons@The Texas Medical Center
Resumo:
The Obama administration's recurring policy emphasis on high-performing charter schools begs the obvious question: how do you identify a high-performing charter school? That is a crucially important policy question because any evaluation strategy that incorrectly identifies charter school performance could have negative effects on the economically and/or academically disadvantaged students who frequently attend charter schools. If low-performing schools are mislabeled and allowed to persist or encouraged to expand, then students may be harmed directly. If high-performing schools are driven from the market by misinformation, then students will lose access to programs and services that can make a difference in their lives. Most of the scholarly analysis to date has focused on comparing the performance of students in charter schools to that of similar students in traditional public schools (TPS). By design, that research measures charter school performance only in relative terms. Charter schools that outperform similarly situated, but low performing, TPSs have positive effects, even if the charter schools are mediocre in an absolute sense. This analysis describes strategies for identifying high-performing charter schools by comparing charter schools with one another. We begin by describing salient characteristics of Texas charter schools. We follow that discussion with a look at how other researchers across the country have compared charter school effectiveness with TPS effectiveness. We then present several metrics that can be used to identify high-performing charter schools. Those metrics are not mutually exclusive—one could easily justify using multiple measures to evaluate school effectiveness—but they are also not equally informative. If the goal is to measure the contributions that schools are making to student knowledge and skills, then a value-added approach like the ones highlighted in this report is clearly superior to a levels-based approach like that taken under the current accountability system.
Resumo:
With most clinical trials, missing data presents a statistical problem in evaluating a treatment's efficacy. There are many methods commonly used to assess missing data; however, these methods leave room for bias to enter the study. This thesis was a secondary analysis on data taken from TIME, a phase 2 randomized clinical trial conducted to evaluate the safety and effect of the administration timing of bone marrow mononuclear cells (BMMNC) for subjects with acute myocardial infarction (AMI).^ We evaluated the effect of missing data by comparing the variance inflation factor (VIF) of the effect of therapy between all subjects and only subjects with complete data. Through the general linear model, an unbiased solution was made for the VIF of the treatment's efficacy using the weighted least squares method to incorporate missing data. Two groups were identified from the TIME data: 1) all subjects and 2) subjects with complete data (baseline and follow-up measurements). After the general solution was found for the VIF, it was migrated Excel 2010 to evaluate data from TIME. The resulting numerical value from the two groups was compared to assess the effect of missing data.^ The VIF values from the TIME study were considerably less in the group with missing data. By design, we varied the correlation factor in order to evaluate the VIFs of both groups. As the correlation factor increased, the VIF values increased at a faster rate in the group with only complete data. Furthermore, while varying the correlation factor, the number of subjects with missing data was also varied to see how missing data affects the VIF. When subjects with only baseline data was increased, we saw a significant rate increase in VIF values in the group with only complete data while the group with missing data saw a steady and consistent increase in the VIF. The same was seen when we varied the group with follow-up only data. This essentially showed that the VIFs steadily increased when missing data is not ignored. When missing data is ignored as with our comparison group, the VIF values sharply increase as correlation increases.^
Resumo:
Clinical text understanding (CTU) is of interest to health informatics because critical clinical information frequently represented as unconstrained text in electronic health records are extensively used by human experts to guide clinical practice, decision making, and to document delivery of care, but are largely unusable by information systems for queries and computations. Recent initiatives advocating for translational research call for generation of technologies that can integrate structured clinical data with unstructured data, provide a unified interface to all data, and contextualize clinical information for reuse in multidisciplinary and collaborative environment envisioned by CTSA program. This implies that technologies for the processing and interpretation of clinical text should be evaluated not only in terms of their validity and reliability in their intended environment, but also in light of their interoperability, and ability to support information integration and contextualization in a distributed and dynamic environment. This vision adds a new layer of information representation requirements that needs to be accounted for when conceptualizing implementation or acquisition of clinical text processing tools and technologies for multidisciplinary research. On the other hand, electronic health records frequently contain unconstrained clinical text with high variability in use of terms and documentation practices, and without commitmentto grammatical or syntactic structure of the language (e.g. Triage notes, physician and nurse notes, chief complaints, etc). This hinders performance of natural language processing technologies which typically rely heavily on the syntax of language and grammatical structure of the text. This document introduces our method to transform unconstrained clinical text found in electronic health information systems to a formal (computationally understandable) representation that is suitable for querying, integration, contextualization and reuse, and is resilient to the grammatical and syntactic irregularities of the clinical text. We present our design rationale, method, and results of evaluation in processing chief complaints and triage notes from 8 different emergency departments in Houston Texas. At the end, we will discuss significance of our contribution in enabling use of clinical text in a practical bio-surveillance setting.
Resumo:
Developing a Model Interruption is a known human factor that contributes to errors and catastrophic events in healthcare as well as other high-risk industries. The landmark Institute of Medicine (IOM) report, To Err is Human, brought attention to the significance of preventable errors in medicine and suggested that interruptions could be a contributing factor. Previous studies of interruptions in healthcare did not offer a conceptual model by which to study interruptions. As a result of the serious consequences of interruptions investigated in other high-risk industries, there is a need to develop a model to describe, understand, explain, and predict interruptions and their consequences in healthcare. Therefore, the purpose of this study was to develop a model grounded in the literature and to use the model to describe and explain interruptions in healthcare. Specifically, this model would be used to describe and explain interruptions occurring in a Level One Trauma Center. A trauma center was chosen because this environment is characterized as intense, unpredictable, and interrupt-driven. The first step in developing the model began with a review of the literature which revealed that the concept interruption did not have a consistent definition in either the healthcare or non-healthcare literature. Walker and Avant’s method of concept analysis was used to clarify and define the concept. The analysis led to the identification of five defining attributes which include (1) a human experience, (2) an intrusion of a secondary, unplanned, and unexpected task, (3) discontinuity, (4) externally or internally initiated, and (5) situated within a context. However, before an interruption could commence, five conditions known as antecedents must occur. For an interruption to take place (1) an intent to interrupt is formed by the initiator, (2) a physical signal must pass a threshold test of detection by the recipient, (3) the sensory system of the recipient is stimulated to respond to the initiator, (4) an interruption task is presented to recipient, and (5) the interruption task is either accepted or rejected by v the recipient. An interruption was determined to be quantifiable by (1) the frequency of occurrence of an interruption, (2) the number of times the primary task has been suspended to perform an interrupting task, (3) the length of time the primary task has been suspended, and (4) the frequency of returning to the primary task or not returning to the primary task. As a result of the concept analysis, a definition of an interruption was derived from the literature. An interruption is defined as a break in the performance of a human activity initiated internal or external to the recipient and occurring within the context of a setting or location. This break results in the suspension of the initial task by initiating the performance of an unplanned task with the assumption that the initial task will be resumed. The definition is inclusive of all the defining attributes of an interruption. This is a standard definition that can be used by the healthcare industry. From the definition, a visual model of an interruption was developed. The model was used to describe and explain the interruptions recorded for an instrumental case study of physicians and registered nurses (RNs) working in a Level One Trauma Center. Five physicians were observed for a total of 29 hours, 31 minutes. Eight registered nurses were observed for a total of 40 hours 9 minutes. Observations were made on either the 0700–1500 or the 1500-2300 shift using the shadowing technique. Observations were recorded in the field note format. The field notes were analyzed by a hybrid method of categorizing activities and interruptions. The method was developed by using both a deductive a priori classification framework and by the inductive process utilizing line-byline coding and constant comparison as stated in Grounded Theory. The following categories were identified as relative to this study: Intended Recipient - the person to be interrupted Unintended Recipient - not the intended recipient of an interruption; i.e., receiving a phone call that was incorrectly dialed Indirect Recipient – the incidental recipient of an interruption; i.e., talking with another, thereby suspending the original activity Recipient Blocked – the intended recipient does not accept the interruption Recipient Delayed – the intended recipient postpones an interruption Self-interruption – a person, independent of another person, suspends one activity to perform another; i.e., while walking, stops abruptly and talks to another person Distraction – briefly disengaging from a task Organizational Design – the physical layout of the workspace that causes a disruption in workflow Artifacts Not Available – supplies and equipment that are not available in the workspace causing a disruption in workflow Initiator – a person who initiates an interruption Interruption by Organizational Design and Artifacts Not Available were identified as two new categories of interruption. These categories had not previously been cited in the literature. Analysis of the observations indicated that physicians were found to perform slightly fewer activities per hour when compared to RNs. This variance may be attributed to differing roles and responsibilities. Physicians were found to have more activities interrupted when compared to RNs. However, RNs experienced more interruptions per hour. Other people were determined to be the most commonly used medium through which to deliver an interruption. Additional mediums used to deliver an interruption vii included the telephone, pager, and one’s self. Both physicians and RNs were observed to resume an original interrupted activity more often than not. In most interruptions, both physicians and RNs performed only one or two interrupting activities before returning to the original interrupted activity. In conclusion the model was found to explain all interruptions observed during the study. However, the model will require an even more comprehensive study in order to establish its predictive value.
Understanding and Characterizing Shared Decision-Making and Behavioral Intent in Medical Uncertainty
Resumo:
Applying Theoretical Constructs to Address Medical Uncertainty Situations involving medical reasoning usually include some level of medical uncertainty. Despite the identification of shared decision-making (SDM) as an effective technique, it has been observed that the likelihood of physicians and patients engaging in shared decision making is lower in those situations where it is most needed; specifically in circumstances of medical uncertainty. Having identified shared decision making as an effective, yet often a neglected approach to resolving a lack of information exchange in situations involving medical uncertainty, the next step is to determine the way(s) in which SDM can be integrated and the supplemental processes that may facilitate its integration. SDM involves unique types of communication and relationships between patients and physicians. Therefore, it is necessary to further understand and incorporate human behavioral elements - in particular, behavioral intent - in order to successfully identify and realize the potential benefits of SDM. This paper discusses the background and potential interaction between the theories of shared decision-making, medical uncertainty, and behavioral intent. Identifying Shared Decision-Making Elements in Medical Encounters Dealing with Uncertainty A recent summary of the state of medical knowledge in the U.S. reported that nearly half (47%) of all treatments were of unknown effectiveness, and an additional 7% involved an uncertain tradeoff between benefits and harms. Shared decision-making (SDM) was identified as an effective technique for managing uncertainty when two or more parties were involved. In order to understand which of the elements of SDM are used most frequently and effectively, it is necessary to identify these key elements, and understand how these elements related to each other and the SDM process. The elements identified through the course of the present research were selected from basic principles of the SDM model and the “Data, Information, Knowledge, Wisdom” (DIKW) Hierarchy. The goal of this ethnographic research was to identify which common elements of shared decision-making patients are most often observed applying in the medical encounter. The results of the present study facilitated the understanding of which elements patients were more likely to exhibit during a primary care medical encounter, as well as determining variables of interest leading to more successful shared decision-making practices between patients and their physicians. Understanding Behavioral Intent to Participate in Shared Decision-Making in Medically Uncertain Situations Objective: This article describes the process undertaken to identify and validate behavioral and normative beliefs and behavioral intent of men between the ages of 45-70 with regard to participating in shared decision-making in medically uncertain situations. This article also discusses the preliminary results of the aforementioned processes and explores potential future uses of this information which may facilitate greater understanding, efficiency and effectiveness of doctor-patient consultations.Design: Qualitative Study using deductive content analysisSetting: Individual semi-structure patient interviews were conducted until data saturation was reached. Researchers read the transcripts and developed a list of codes.Subjects: 25 subjects drawn from the Philadelphia community.Measurements: Qualitative indicators were developed to measure respondents’ experiences and beliefs related to behavioral intent to participate in shared decision-making during medical uncertainty. Subjects were also asked to complete the Krantz Health Opinion Survey as a method of triangulation.Results: Several factors were repeatedly described by respondents as being essential to participate in shared decision-making in medical uncertainty. These factors included past experience with medical uncertainty, an individual’s personality, and the relationship between the patient and his physician.Conclusions: The findings of this study led to the development of a category framework that helped understand an individual’s needs and motivational factors in their intent to participate in shared decision-making. The three main categories include 1) an individual’s representation of medically uncertainty, 2) how the individual copes with medical uncertainty, and 3) the individual’s behavioral intent to seek information and participate in shared decision-making during times of medically uncertain situations.
Resumo:
Manuscript 1: “Conceptual Analysis: Externalizing Nursing Knowledge” We use concept analysis to establish that the report tool nurses prepare, carry, reference, amend, and use as a temporary data repository are examples of cognitive artifacts. This tool, integrally woven throughout the work and practice of nurses, is important to cognition and clinical decision-making. Establishing the tool as a cognitive artifact will support new dimensions of study. Such studies can characterize how this report tool supports cognition, internal representation of knowledge and skills, and external representation of knowledge of the nurse. Manuscript 2: “Research Methods: Exploring Cognitive Work” The purpose of this paper is to describe a complex, cross-sectional, multi-method approach to study of personal cognitive artifacts in the clinical environment. The complex data arrays present in these cognitive artifacts warrant the use of multiple methods of data collection. Use of a less robust research design may result in an incomplete understanding of the meaning, value, content, and relationships between personal cognitive artifacts in the clinical environment and the cognitive work of the user. Manuscript 3: “Making the Cognitive Work of Registered Nurses Visible” Purpose: Knowledge representations and structures are created and used by registered nurses to guide patient care. Understanding is limited regarding how these knowledge representations, or cognitive artifacts, contribute to working memory, prioritization, organization, cognition, and decision-making. The purpose of this study was to identify and characterize the role a specific cognitive artifact knowledge representation and structure as it contributed to the cognitive work of the registered nurse. Methods: Data collection was completed, using qualitative research methods, by shadowing and interviewing 25 registered nurses. Data analysis employed triangulation and iterative analytic processes. Results: Nurse cognitive artifacts support recall, data evaluation, decision-making, organization, and prioritization. These cognitive artifacts demonstrated spatial, longitudinal, chronologic, visual, and personal cues to support the cognitive work of nurses. Conclusions: Nurse cognitive artifacts are an important adjunct to the cognitive work of nurses, and directly support patient care. Nurses need to be able to configure their cognitive artifact in ways that are meaningful and support their internal knowledge representations.