3 resultados para ULCERATION

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypothesis to be tested is that there are two distinct types of chronic responses in irradiated normal tissues, each resulting from damage to different cell populations in the tissue. The first is a sequala of chronic epithelial depletion in which the tissue's integrity cannot be maintained, i.e. a "consequential" chronic response. The other response is due to cell loss in the connective tissue and/or vascular stroma, i.e. a "primary" chronic response. The purpose of this study was to test the hypothesis in the murine colon by first, establishing a model of each chronic response and then, by determining whether the responses differed in timing of expression, histology, and expression of specific collagen types. The model of late damage used was colonic obstructions/strictures induced by a single dose of 27 Gy ("consequential" response) and two equal doses of 14.75 Gy (t = 10 days) ("primary" response). "Consequential" lesions appeared as early as 5 weeks after 27 Gy and were characterized by a deep mucosal ulceration and a thickened fibrotic serosa containing excessive accumulations of collagen types I and III. Both types were commingled in the scar at the base of the ulcer. Fibroblasts were synthesizing pro-collagen types I and III mRNA 10 weeks prior to measurable increases in collagen. A significant decrease in the ratio of collagen types I:III was associated with the "consequential" response at 4-5 months post-irradiation. The "primary" response, on the other hand, did not appear until 40 weeks after the split dose even though the total dose delivered was approximately the same as that for the "consequential" response. The "primary" response was characterized with an intact mucosa and a thickened fibrotic submucosa which contained excessive amounts of only collagen type I. An increased number of fibroblasts were synthesizing pro-collagen type I mRNA nearly 25 weeks before collagen type I levels were increased. The "primary" response lesion had a significantly elevated collagen type I:III ratio at 10-13 months post-irradiation. These data show a clear difference between the two chronic response and suggest that not all chronic responses share a common pathogenesis, but depend on the cell population in the tissue that is damaged. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helicobacter pylori, which colonizes the stomach and causes the most common chronic infection in man, is associated with peptic ulceration, gastric carcinoma and gastric lymphoma. Studies in animals demonstrated that mucosal immunization could induce immune response against H. pylori and prevent H. pylori infection only if powerful mucosal adjuvants such as cholera toxin (CT) or heat-labile toxin of E. coli (LT) were used along with an H. pylori protein antigen. Adjuvants such as CT or LT cannot be used for humans because of their toxicity. Finding non-toxic alternative adjuvants/immunomodulators or immunization strategies that eliminates the use of adjuvants is critical for the development of efficacious human Helicobacter vaccines. We investigated whether several new adjuvants such as Muramyl Tripeptide Phosphatidylethonolamine (MTP-PE), QS21 (a Quil A derivative), Monophosphoryl lipid A (MPL) or heat shock proteins (HSP) of Mycobacterium tuberculosis could be feasible to develop a safe and effective mucosal vaccine against H. pylori using a murine model. C57/BL6 mice were immunized with liposomes incorporating each adjuvant along with urease, a major antigenic protein of H. pylori, to test their mucosal effectiveness. Since DNA vaccination eliminates both the use of adjuvants and antigens we also investigated whether immunization with plasmid DNA encoding urease could induce protective immunity to H. pylori infection in the same murine model. We found that oral vaccination with liposomal MTP-PE (6.7 m g) and urease, (100 m g) induced antigen-specific systemic and mucosal immune response and protected mice against H. pylori challenge when compared to control groups. Parenteral and mucosal immunizations with as little as 20 m g naked or formulated DNA encoding urease induced systemic and mucosal immune response against urease and partially protected mice against H. pylori infection. DNA vaccination provided long-lasting immunity and serum anti-urease IgG antibodies were elevated for up to 12 months. No toxicity was detected after immunizations with either liposomal MTP-PE and urease or plasmid DNA and both were well tolerated. We conclude that immunization liposomes containing MTP-PE and urease is a promising strategy deserving further investigation and may be considered for humans. DNA vaccination could be used to prime immune response prior to oral protein vaccination and may reduce the dose of protein and adjuvant needed to achieve protective immunity. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This prospective cohort study estimated how antibacterial resistance affected the time until clinical response. Relative rates of improvement and cure were estimated by proportional-hazards regression for 391 patients with culture-confirmed bacterial keratitis who had the ciprofloxacin minimal inhibitory concentration (MIC) measured of the principal corneal isolate and who were treated with ciprofloxacin 0.3% solution or ointment. After adjusting for age and hypopyon status and stratifying by ulcer size, clinic, and ciprofloxacin formulation, the summary rate of clinical improvement with ciprofloxacin therapy was reduced by 42% (95% confidence limits [CL], 3%, 65%) among patients whose corneal isolate's ciprofloxacin MIC exceeded 1.0 μg/mL compared to those with more sensitive isolates. The summary rate of resolution to improvement and cure was reduced by 36% (95% CL, 11%, 53%) among corneal infections having a higher ciprofloxacin MIC. Rate ratios were modified by the size of the presenting corneal ulceration; for ulcer diameters of 4 mm or less and of more than 4 mm, improvement rate ratios were 0.56 (95% CL, 0.31, 1.02) and 0.65 (95% CL, 0.23, 1.80), respectively; resolution rate ratios were 0.63 (95% CL, 0.44, 0.91) and 0.67 (95% CL, 0.32, 1.39), respectively. Sensitivity analysis showed that the summary improvement rate ratio could be maximally overestimated by 24% (95% CL, −29%, 114%) because of informative censoring or by 33% (95% CL, −21%, 126%) from loss to follow up. Based on reported corneal pharmacokinetics of topical ciprofloxacin, the probability of clinical improvement was 90% or more if the ratio of the achievable corneal ciprofloxacin concentration to the corneal isolate's ciprofloxacin MIC was above 8 or the ratio of the area under the 24-hour corneal concentration curve to the ciprofloxacin MIC was greater than 151. This study suggests that corneal infections by bacteria having a higher ciprofloxacin MIC respond more slowly to ciprofloxacin treatment than those with a lower MIC. While the rate of clinical resolution is affected by patient age and clinical severity, antimicrobial susceptibility testing of corneal cultures can indicate the relative effectiveness of antibacterial therapy. A pharmacodynamic approach to treating bacterial keratitis offers the prospect of optimal antimicrobial selection and modification. ^