2 resultados para U.S. Clean Coal Technology Demonstration Program
em DigitalCommons@The Texas Medical Center
Resumo:
The Federal Coal Mine Health and Safety Act of 1969 required that periodic chest radiographs be offered to underground coal miners to protect the miners from the development of Coal Workers' Pneumoconiosis (CWP) and progression of the disease to progressive massive fibrosis (PMF). These examinations are administered by the National Institute for Occupational Safety and Health (NIOSH) through the Coal Workers' Health Surveillance Program (CWHSP). The mine operator is required to provide each miner with the opportunity to have the chest radiograph at no cost to the miner.^ Three rounds of examinations have been conducted since 1969 and the fourth is underway. The decrease in participation over rounds is of great concern if the incidence and progression of CWP are to be understood and controlled.^ This study developed rates of participation for each of 558 West Virginia underground coal mines who submitted or had NIOSH assigned plans for making chest radiographs available during the third round, July 1978 through December 1980. These rates were analyzed in relation to desired levels of participation and to reinforcing, predisposing and enabling factors presumed to affect rates of participation in disease prevention and surveillance programs.^ Two reinforcing factors, size of mine and inclusion of the mine in the National Coal Study (NCS) epidemiology research program, and the enabling factor, use of an on-site radiograph facility, demonstrated highly significant relationships to participation rates.^ The major findings of the study were: (1) Participation in the CWHSP is even lower than previously estimated; (2) CWHSP program evaluation is not systematic and program data base is not complete and comprehensive; and (3) NIOSH program policy is not clear and administration of the CWHSP is fragmented and lacks adequate fiscal and personnel resources. ^
Resumo:
"Technology assessment is a comprehensive form of policy research that examines the short- and long-term social consequences of the application or use of technology" (US Congress 1967).^ This study explored a research methodology appropriate for technology assessment (TA) within the health industry. The case studied was utilization of external Small-Volume Infusion Pumps (SVIP) at a cancer treatment and research center. Primary and secondary data were collected in three project phases. In Phase I, hospital prescription records (N = 14,979) represented SVIP adoption and utilization for the years 1982-1984. The Candidate Adoption-Use (CA-U) diffusion paradigm developed for this study was germane. Compared to classic and unorthodox curves, CA-U more accurately simulated empiric experience. The hospital SVIP 1983-1984 trends denoted assurance in prescribing chemotherapy and concomitant balloon SVIP efficacy and efficiency. Abandonment of battery pumps was predicted while exponential demand for balloon SVIP was forecast for 1985-1987. In Phase II, patients using SVIP (N = 117) were prospectively surveyed from July to October 1984; the data represented a single episode of therapy. The questionnaire and indices, specifically designed to measure the impact of SVIP, evinced face validity. Compeer group data were from pre-SVIP case reviews rather than from an inpatient sample. Statistically significant results indicated that outpatients using SVIP interacted socially more than inpatients using the alternative technology. Additionally, the hospital's education program effectively taught clients to discriminate between self care and professional SVIP services. In these contexts, there was sufficient evidence that the alternative technology restricted patients activity whereas SVIP permitted patients to function more independently and in a social lifestyle, thus adding quality to life. In Phase III, diffusion forecast and patient survey findings were combined with direct observation of clinic services to profile some economic dimensions of SVIP. These three project phases provide a foundation for executing: (1) cost effectiveness analysis of external versus internal infusors, (2) institutional resource allocation, and (3) technology deployment to epidemiology-significant communities. The models and methods tested in this research of clinical technology assessment are innovative and do assess biotechnology. ^