2 resultados para Two-dimensional electrophoresis (2-DE)
em DigitalCommons@The Texas Medical Center
Resumo:
PURPOSE: To establish the identity of a prominent protein, approximately 70 kDa, that is markedly increased in the retina of monkeys with experimental glaucoma compared with the fellow control retina, the relationship to glaucoma severity, and its localization in the retina. METHODS: Retinal extracts were subjected to 2-D gel electrophoresis to identify differentially expressed proteins. Purified peptides from the abundant 70 kDa protein were analyzed and identified by liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) separation, and collision-induced dissociation sequencing. Protein identity was performed on MASCOT (Matrix Science, Boston, MA) and confirmed by Western blot. The relationship between the increase in this protein and glaucoma severity was investigated by regression analyses. Protein localization in retina was evaluated by immunohistochemistry with confocal imaging. RESULTS: The abundant protein was identified as Macaca mulatta serum albumin precursor (67 kDa) from eight non-overlapping proteolytic fragments, and the identity was confirmed by Western blot. The average increase in retinal albumin content was 2.3 fold (P = 0.015). In glaucoma eyes, albumin was localized to some neurons of the inner nuclear layer, in the inner plexiform layer, and along the vitreal surface, but it was only found in blood vessels in control retinas. CONCLUSIONS: Albumin is the abundant protein found in the glaucomatous monkey retinas. The increased albumin is primarily localized to the inner retina where oxidative damage associated with experimental glaucoma is known to be prominent. Since albumin is a major antioxidant, the increase of albumin in the retinas of eyes with experimental glaucoma may serve to protect the retina against oxidative damage.
Resumo:
SHP1 is a cytosolic protein tyrosine phosphatase that contains two SH2 domains. It is highly expressed in hematopoietic cells and expressed in normal epithelium at lower levels. While SHP1 in hematopoietic cells is thought to be a negative regulator of cellular signaling by associating with and dephosphorylating various receptors and their downstream effectors after they become activated, its precise function in epithelium remains to be understood. The potential involvement of SHP1 in human tumorigenesis has been hypothesized from the findings that SHP1 can interact with, dephosphorylate, and regulate the activity of several protein tyrosine kinases (PTKs) implicated in human cancer. These PTKs include epidermal growth factor receptor (EGFR) and Src. Such speculation is also supported by the report that SHP1 is overexpressed in human ovarian cancers. ^ Here we report, for the first time, that the levels of SHP1 expression and activity are altered in human breast cancer cells in comparison with normal breast epithelium. In particular, SHP1 expression is nearly lost in the breast cancer cell lines MDA-MB231 and MDA-MB435. After the re-introduction of SHP1 both in wild type (wt) and enzymatically inactive (dn) forms, into the MDA-MB231 cells, we observed no changes in cellular proliferation. However, the overexpression of wt SHP1 led to increased anchorage-independent growth in the MDA-MB231 cells. SHP1 phosphatase activity is essential for such an increase since the overexpression of dn SHP1 had no effect. Enhanced turnorigenicity in nude mice was also observed in the MDA-MB231 cells overexpressing wt SHP1, but not dn SHP1, suggesting the crucial function of SHP1 enzymatic activity in this process. Our observations in this study indicate that SHP1 promotes tumorigenesis by a mechanism or mechanisms apart from enchancing angiogenesis. In addition, we have found no evidence that the overexpression of SHP1 could affect metastatic potential in the MDA-MB231 cells. ^ In the MDA-MB231 cells stably transfected with either wt or dn SHP1 the peak level of EGFR tyrosine phosphorylation induced by EGF, as well as the sensitivity to EGF stimulation, was not altered. However, the overexpression of wt SHP1 led to a slight increase in the kinetics of EGFR dephosphorylation, whereas the overexpression of dn SHP1 led to slightly delayed kinetics of EGFR dephosphorylation. The overexpression of either the wt or dn SHP1 did not lead to any significant increase in Src kinase activity. ^ In NIH3T3 cells, the transient overexpression of SHP1 led to no significant changes in MAP kinase (ERK2) activation by EGF or Akt activation by PDGF. In 3T3H4 cells, the transient overexpression of SHP1 led to no significant changes in MAP kinase (ERK2) activation by heregulin. The transient overexpression of wt SHP1 in the MDA-MB231 cells caused an apparent increase, ranging from 10% to 20%, in the G0/G1 population of the cells with a corresponding decrease in the S phase population. ^ In order to understand the mechanisms by which SHP1 exerts its positive effect on the tumorigenic potential of the MDA-MB231 cells, we employed two-dimensional electrophoresis in an attempt to identify cellular protein(s) with significantly altered tyrosine phosphorylation level upon wt SHP1 overexpression. The overexpression of wt SHP1 but not dn SHP1, leads increased tyrosine phosphorylation of a protein with a molecular weight of approximately 40 kDa and a pI between 5.9 to 6.6. ^