3 resultados para Twin nucleation and growth

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical evidence and theoretical studies suggest that the phenotype, i.e., cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due to microenvironmental factors and gene expression that govern tumor growth and invasiveness, also determine gross tumor-scale morphology. It has been difficult to quantify the relative effect of these links on disease progression and prognosis using conventional clinical and experimental methods and observables. As a result, successful individualized treatment of highly malignant and invasive cancers, such as glioblastoma, via surgical resection and chemotherapy cannot be offered and outcomes are generally poor. What is needed is a deterministic, quantifiable method to enable understanding of the connections between phenotype and tumor morphology. Here, we critically assess advantages and disadvantages of recent computational modeling efforts (e.g., continuum, discrete, and cellular automata models) that have pursued this understanding. Based on this assessment, we review a multiscale, i.e., from the molecular to the gross tumor scale, mathematical and computational "first-principle" approach based on mass conservation and other physical laws, such as employed in reaction-diffusion systems. Model variables describe known characteristics of tumor behavior, and parameters and functional relationships across scales are informed from in vitro, in vivo and ex vivo biology. We review the feasibility of this methodology that, once coupled to tumor imaging and tumor biopsy or cell culture data, should enable prediction of tumor growth and therapy outcome through quantification of the relation between the underlying dynamics and morphological characteristics. In particular, morphologic stability analysis of this mathematical model reveals that tumor cell patterning at the tumor-host interface is regulated by cell proliferation, adhesion and other phenotypic characteristics: histopathology information of tumor boundary can be inputted to the mathematical model and used as a phenotype-diagnostic tool to predict collective and individual tumor cell invasion of surrounding tissue. This approach further provides a means to deterministically test effects of novel and hypothetical therapy strategies on tumor behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously found that FoxM1B is overexpressed in human glioblastomas and that forced FoxM1B expression in anaplastic astrocytoma cells leads to the formation of highly angiogenic glioblastoma in nude mice. However, the molecular mechanisms by which FoxM1B enhances glioma angiogenesis are currently unknown. In this study, we found that vascular endothelial growth factor (VEGF) is a direct transcriptional target of FoxM1B. FoxM1B overexpression increased VEGF expression, whereas blockade of FoxM1 expression suppressed VEGF expression in glioma cells. Transfection of FoxM1 into glioma cells directly activated the VEGF promoter, and inhibition of FoxM1 expression by FoxM1 siRNA suppressed VEGF promoter activation. We identified two FoxM1-binding sites in the VEGF promoter that specifically bound to the FoxM1 protein. Mutation of these FoxM1-binding sites significantly attenuated VEGF promoter activity. Furthermore, FoxM1 overexpression increased and inhibition of FoxM1 expression suppressed the angiogenic ability of glioma cells. Finally, an immunohistochemical analysis of 59 human glioblastoma specimens also showed a significant correlation between FoxM1 overexpression and elevated VEGF expression. Our findings provide both clinical and mechanistic evidence that FoxM1 contributes to glioma progression by enhancing VEGF gene transcription and thus tumor angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple dietary deficiencies and high rates of infectious illness are major health problems leading to malnutrition and limitation of growth of children in developing countries. Longitudinal studies which provide information on illness incidence and growth velocity are needed in order to untangle the complex interrelationship between nutrition, illness and growth. From 1967 to 1973, researchers led by Dr. Bacon Chow of the Johns Hopkins University School of Hygiene undertook a quasi-experimental prospective study in Suilin Township, Taiwan to determine the effects of a nutritional supplement to the diets of pregnant and lactating women on the growth, development and resistance to disease of their offspring. This dissertation presents results from the analysis of infant morbidity and postnatal growth.^ Maternal nutritional supplementation has no apparent effect on the postnatal growth or morbidity of infants. Significant sex differences exist in growth response to illness and in illness susceptibility. Male infants have more diarrhea and upper respiratory illness. Respiratory illness is positively associated with growth rate in weight in the first semester of life. Diarrhea is significantly negatively associated with growth in length in the second semester. Small-for-date infants are more susceptible to illness in general and have a different pattern of growth response than large-for-date infants.^ Principal components analysis of illness data is shown to be an effective technique for making more precise use of ambiguous morbidity data. Multiple regression with component scores is an accurate method for estimating variance in growth rate predicted by indepenent illness variables. A model is advanced in which initial postnatal growth rate determines subsequent susceptibility to nutritional stress and infection. Initial growth rate is a function of prenatal nutrition, but is not significantly affected by maternal supplementation during gestation or lactation. Critical evaluation is made of nutritional supplementation programs which do not afford disease control.^