4 resultados para Tutorial on Computing
em DigitalCommons@The Texas Medical Center
Resumo:
Two studies among college students were conducted to evaluate appropriate measurement methods for etiological research on computing-related upper extremity musculoskeletal disorders (UEMSDs). ^ A cross-sectional study among 100 graduate students evaluated the utility of symptoms surveys (a VAS scale and 5-point Likert scale) compared with two UEMSD clinical classification systems (Gerr and Moore protocols). The two symptom measures were highly concordant (Lin's rho = 0.54; Spearman's r = 0.72); the two clinical protocols were moderately concordant (Cohen's kappa = 0.50). Sensitivity and specificity, endorsed by Youden's J statistic, did not reveal much agreement between the symptoms surveys and clinical examinations. It cannot be concluded self-report symptoms surveys can be used as surrogate for clinical examinations. ^ A pilot repeated measures study conducted among 30 undergraduate students evaluated computing exposure measurement methods. Key findings are: temporal variations in symptoms, the odds of experiencing symptoms increased with every hour of computer use (adjOR = 1.1, p < .10) and every stretch break taken (adjOR = 1.3, p < .10). When measuring posture using the Computer Use Checklist, a positive association with symptoms was observed (adjOR = 1.3, p < 0.10), while measuring posture using a modified Rapid Upper Limb Assessment produced unexpected and inconsistent associations. The findings were inconclusive in identifying an appropriate posture assessment or superior conceptualization of computer use exposure. ^ A cross-sectional study of 166 graduate students evaluated the comparability of graduate students to College Computing & Health surveys administered to undergraduate students. Fifty-five percent reported computing-related pain and functional limitations. Years of computer use in graduate school and number of years in school where weekly computer use was ≥ 10 hours were associated with pain within an hour of computing in logistic regression analyses. The findings are consistent with current literature on both undergraduate and graduate students. ^
Resumo:
PURPOSE: To develop and implement a method for improved cerebellar tissue classification on the MRI of brain by automatically isolating the cerebellum prior to segmentation. MATERIALS AND METHODS: Dual fast spin echo (FSE) and fluid attenuation inversion recovery (FLAIR) images were acquired on 18 normal volunteers on a 3 T Philips scanner. The cerebellum was isolated from the rest of the brain using a symmetric inverse consistent nonlinear registration of individual brain with the parcellated template. The cerebellum was then separated by masking the anatomical image with individual FLAIR images. Tissues in both the cerebellum and rest of the brain were separately classified using hidden Markov random field (HMRF), a parametric method, and then combined to obtain tissue classification of the whole brain. The proposed method for tissue classification on real MR brain images was evaluated subjectively by two experts. The segmentation results on Brainweb images with varying noise and intensity nonuniformity levels were quantitatively compared with the ground truth by computing the Dice similarity indices. RESULTS: The proposed method significantly improved the cerebellar tissue classification on all normal volunteers included in this study without compromising the classification in remaining part of the brain. The average similarity indices for gray matter (GM) and white matter (WM) in the cerebellum are 89.81 (+/-2.34) and 93.04 (+/-2.41), demonstrating excellent performance of the proposed methodology. CONCLUSION: The proposed method significantly improved tissue classification in the cerebellum. The GM was overestimated when segmentation was performed on the whole brain as a single object.
Resumo:
(1) A mathematical theory for computing the probabilities of various nucleotide configurations is developed, and the probability of obtaining the correct phylogenetic tree (model tree) from sequence data is evaluated for six phylogenetic tree-making methods (UPGMA, distance Wagner method, transformed distance method, Fitch-Margoliash's method, maximum parsimony method, and compatibility method). The number of nucleotides (m*) necessary to obtain the correct tree with a probability of 95% is estimated with special reference to the human, chimpanzee, and gorilla divergence. m* is at least 4,200, but the availability of outgroup species greatly reduces m* for all methods except UPGMA. m* increases if transitions occur more frequently than transversions as in the case of mitochondrial DNA. (2) A new tree-making method called the neighbor-joining method is proposed. This method is applicable either for distance data or character state data. Computer simulation has shown that the neighbor-joining method is generally better than UPGMA, Farris' method, Li's method, and modified Farris method on recovering the true topology when distance data are used. A related method, the simultaneous partitioning method, is also discussed. (3) The maximum likelihood (ML) method for phylogeny reconstruction under the assumption of both constant and varying evolutionary rates is studied, and a new algorithm for obtaining the ML tree is presented. This method gives a tree similar to that obtained by UPGMA when constant evolutionary rate is assumed, whereas it gives a tree similar to that obtained by the maximum parsimony tree and the neighbor-joining method when varying evolutionary rate is assumed. ^