3 resultados para Tryptophan alkaloid

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serotonin (5-HT) neurotransmission deficits have been implicated in impulsive aggression. A Trp-free beverage of amino acids competitively inhibits Trp uptake into the brain for 5-HT synthesis and also lowers endogenous plasma Trp for several hours. This has worsened mood and/or increased aggressive behavior, especially in hostile persons or those with histories of depression. In 24 community-recruited men (12 each with and without significant aggression histories), aggressive and impulsive behavior in the laboratory was assessed before and after plasma Trp depletion and Trp loading. In the aggression model, subjects were provoked by periodic subtractions of participation earnings, and these subtractions were blamed on a ficitious other participant. Aggression was measured as the responses the subject made to subtract money from his antagonist. Impulsiveness was operationalized as: (1) the choice of smaller reward after a shorter delay over having to wait longer to receive a larger reward, and (2) “false alarm” commission errors in a modified Continuous Performance Task, which represent a failure to inhibit responding to stimuli similar (but not identical) to target stimuli. Finally, plasma cortisol and Trp were measured under each condition immediately following a aggression testing session when subjects were highly provoked. I hypothesized that 5-HT may tonically modulate (inhibit) the hypothalmnic-pituitary-adrenal stress response, such that Trp depletion may enhance the cortisol response to high provocation in aggressive men. ^ Trp depletion had no effect in the laboratory tasks purported to measure impulsive behavior, and failed to cause increases in aggressive behavior under low provocation conditions. Under higher provocation, however, aggressive responses we re elevated under Trp-depleted conditions relative to Trp-loaded conditions in aggressive men, whereas the reverse was true in nonaggressive men. Cortisol levels nonsignificantly paralled the group differences in aggression under Trp-depleted and Trp-loaded conditions. Aggressive men achieved lower plasma Trp levels after Trp loading than did nonaggressive men, possibly due to heavy alcohol use histories. The high post-loading plasma Trp levels in nonaggressive men tended also to correlate with their aggressive responding rates, due perhaps to increases in other psychoactive Trp metabolites. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NK314 is a novel synthetic benzo[c]phenanthridine alkaloid that is currently in clinical trials as an antitumor compound, based on impressive activities in preclinical models. However, its mechanism of action is unknown. The present investigations were directed at determining the mechanism of action of this agent and cellular responses to NK314. My studies demonstrated that NK314 intercalated into DNA, trapped topoisomerase IIα in its cleavage complex intermediate, and inhibited the ability of topoisomerase IIα to relax super-coiled DNA. CEM/VM1 cells, which are resistant to etoposide due to mutations in topoisomerase IIα, were cross-resistant to NK314. However, CEM/C2 cells, which are resistant to camptothecin due to mutations in topoisomerase I, retained sensitivity. This indicates topoisomerase IIα is the target of NK314 in the cells. NK314 caused phosphorylation of the histone variant, H2AX, which is considered a marker of DNA double-strand breaks. DNA double-strand breaks were also evidenced by pulsed-field gel electrophoresis and visualized as chromosomal aberrations after cells were treated with NK314 and arrested in mitosis. Cell cycle checkpoints are activated following DNA damage. NK314 induced significant G2 cell cycle arrest in several cell lines, independent of p53 status, suggesting the existence of a common mechanism of checkpoint activation. The Chk1-Cdc25C-Cdk1 G2 checkpoint pathway was activated in response to NK314, which can be abrogated by the Chk1 inhibitor UCN-01. Cell cycle checkpoint activation may be a defensive mechanism that provides time for DNA repair. DNA double-strand breaks are repaired either through ATM-mediated homologous recombination or DNA-PK-mediated non-homologous end-joining repair pathways. Clonogenic assays demonstrated a significant decrease of colony formation in both ATM deficient and DNA-PK deficient cells compared to ATM repleted and DNA-PK wild type cells respectively, indicating that both ATM and DNA-PK play important roles in the survival of the cells in response to NK314. The DNA-PK specific inhibitor NU7441 also significantly sensitized cells to NK314. In conclusion, the major mechanism of NK314 is to intercalate into DNA, trap and inhibit topoisomerase IIα, an action that leads to the generation of double-strand DNA breaks, which activate ATM and DNA-PK mediated DNA repair pathways and Chk1 mediated G2 checkpoint pathway. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal studies have shown that behavioral responses to cocaine-related cues are altered by serotonergic medications. The effects of pharmacological agents on serotonin receptors 2a (5-HT2A) and 2c (5-HT2C), have yielded results suggesting that selective 5-HT2A antagonists and 5-HT2C agonists promote the disruption of cocaine-associated memories. One measure of cocaine related cues in humans is attentional bias, in which cocaine dependent individuals show greater response latency for cocaine related words than neutral words. Data from our laboratory shows that cocaine dependent subjects have altered attentional bias compared to controls. The purpose of this thesis was to investigate the role of the serotonin system in attentional bias and impulsivity in cocaine dependent individuals. We focused on the serotonin transporter, serotonin receptors 2A and 2C and tryptophan hydroxylase 1 and 2 (TPH1 and TPH2). We predicted that attentional bias and impulsivity would be higher in cocaine dependent individuals who had lower serotonin function. In the current study, we found a significant association between TPH2 genotype and attentional bias for the second block of the cocaine Stroop task. There was also a significant association between average attentional bias and HTTLPR genotype in the cocaine dependent individuals. The HT2C receptor genotype and attentional bias in our study sample also showed a significant difference. We did not find a significant difference between the serotonin 2A receptor variants or the TPH1 variants and attentional bias in the cocaine dependent group. In conclusion, the current study suggests that serotonergic medications should be utilized as pharmacotherapeutic treatment for cocaine addiction. Our results indicate that TPH2, the serotonin transporter and 2C receptor should be targeted in such a way as to modulate both, leading to increased synaptic serotonin function.