2 resultados para Triple Bottom-Line

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was twofold: (1) To describe the relation of the intensity of DSS implementation to financial performance as an empirical exploration of improved performance at the organizational level. (2) To describe the relation of the intensity of DSS implementation to the type of organizational decision culture. A multiple case study design was utilized to compare three groups of paired cases. A pattern matching strategy was applied in this study. Four predictions were specified and compared to the empirical data. A progressively upward trend in the scores was predicted for the following theoretical relationships. (1) The greater the number of DSSs, the higher the sophistication index. (2) The greater the number of DSSs, the higher the financial ratios. (3) The greater the number of DSSs, the higher the culture score. (4) The higher the culture score, the higher the financial ratios. The data did not support any of the predicted trends except the relation between the number of DSSs and the financial ratios. The Income/Revenue ratio indicates the efficiency of a company's operations. One would expect that this ratio would be most affected by the operational and financial decision support systems. The majority of the systems measured in the study supported decisions tangential to the patient service areas. The evidence suggested that the type and number of decision support systems affects the bottom line. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer cell lines can be treated with a drug and the molecular comparison of responders and non-responders may yield potential predictors that could be tested in the clinic. It is a bioinformatics challenge to apply the cell line-derived multivariable response predictors to patients who respond to therapy. Using the gene expression data from 23 breast cancer cell lines, I developed three predictors of dasatinib sensitivity by selecting differentially expressed genes and applying different classification algorithms. The performance of these predictors on independent cell lines with known dasatinib response was tested. The predictor based on weighted voting method has the best overall performance. It correctly predicted dasatinib sensitivity in 11 out of 12 (92%) breast and 17 out of 23 (74%) lung cancer cell lines. These predictors were then applied to the gene expression data from 133 breast cancer patients in an attempt to predict how the patients might respond to dasatinib therapy. Two predictors identified 13 patients in common to be dasatinib sensitive. Sixty two percent of these cases are triple negative (ER-negative, HER2-negative and PR-negative) and 76% are double negative. The result is consistent with the findings from other studies, which identified a target population for dasatinib treatment to be triple negative or basal breast cancer subtype. In conclusion, we think that the cell line-derived dasatinib classifiers can be applied to the human patients. ^