19 resultados para Transurethral resection of the prostate

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated expression levels of the bcl-2 proto-oncogene have been correlated with the appearance of androgen independence in prostate cancer. Although bcl-2 was first cloned as the t (14:18) translocation breakpoint from human follicular B cell lymphoma, the mechanism of overexpression of bcl-2 is largely undefined for advanced prostate cancer, there being no gross alterations in the gene structure. We investigated the role of the product of the prostate apoptosis response gene-4 (Par-4) and the product of the Wilms' tumor 1 gene (WT1) in the regulation of Bcl-2 expression in prostate cancer cell lines. We observed growth arrest and apoptosis, upon decreasing Bcl-2 protein and transcript in the high Bcl-2 expressing, androgen-independent prostate cancer cell lines, by all trans-retinoic acid treatment but this did not occur in the androgen-dependent cell lines expressing low levels of Bcl-2. Changes in localization of Par-4, and an induction in the expression of WT1 protein accompanied the decrease in the Bcl-2 protein and transcript following all trans-retinoic acid treatment, in the androgen-independent prostate cancer cell line. In stable clones expressing ectopic Par-4 we observed decreased Bcl-2 protein and transcript. This was accompanied by an induction in WT1 expression. Finally, we detected Par-4 and WT1 proteins binding to a previously identified WT1 binding site on the bcl-2 promoter both in vitro and in vivo leading to a decrease in transcription from the bcl-2 promoter. We conclude that Par-4 regulates Bcl-2 through a WT1 binding site on the bcl-2 promoter. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer mortality in American men. The distinction between those cases of prostate cancer destined to progress rapidly to lethal metastatic disease and those with little likelihood of causing morbidity and mortality is a major goal of current research. Some type of diagnostic method is urgently needed to identify which histological prostate cancers have completed the progression to a stage that will produce a life-threatening disease, thus requiring immediate therapeutic intervention. The objectives of this dissertation are to delineate a novel genetic region harboring tumor suppressor gene(s) and to identify a marker for prostate tumorigenesis. I first established an in vitro cell model system from a human prostate epithelial cells derived from tissue fragments surrounding a prostate tumor in a patient with prostatic adenocarcinoma. Since chromosome 5 abnormality was present in early, middle and late passages of this cell model system, I examined long-term established prostate cancer cell lines for this chromosome abnormality. The results implicated the region surrounding marker D5S2068 as the locus of interest for further experimentation and location of a tumor suppressor gene in human prostate cancer. ^ Cancer is a group of complex genetic diseases with uncontrolled cell; division and prostate cancer is no exception. I determined if telomeric DNA, and telomerase activity, alone or together, could serve as biomarkers of prostate tumorigenesis. I studied three newly established human prostate cancer cell lines and three fibroblast cell cultures derived from prostate tissues. In conclusion, my data reveal that in the presence of telomerase activity, telomeric repeats are maintained at a certain optimal length, and analysis of telomeric DNA variations might serve as early diagnostic and prognostic biomarkers for prostate cancer. (Abstract shortened by UMI.)^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequent loss of heterozygosity (LOH) at specific chromosomal regions are highly associated with the inactivation of tumor suppressor genes (TSGs) (Weinberg, 1991; Bishop, 1989). Chromosome 8p is the most frequently reported site of LOH (∼60%) in prostate cancer (PC), suggesting that there may be inactivated TSG(s) involved in PC on chromosome 8p. (Bergerheim et. al., 1991; Kagan et. al., 1995). In order to identify the smallest common regions of frequent LOH (SCLs) on chromosome 8, we screened 52 PC patient/tumor samples with 39 polymorphic markers in successive screenings. In the course of refining the SCLs, we identified 3 tumors with >6 Mb homozygous deletions (HZDs) at 8p22 and 8p21, suggesting the presence of candidate TSGs at both loci. These HZDs spanned the two SCLs at 8p22 (46%) and 8p21 (45%). The SCLs were narrowed to 3.2 cM at 8p22 and less than 3 cM at 8p21. ^ In order to identify candidate TSGs within the SCLs on 8p, two approaches were used. In the candidate gene approach, thirty genes that mapped to the SCLs were evaluated for expression in normal prostate and in PC cell lines. One of the candidate genes, Clusterin, showed decreased expression in 4/7 (57%) prostate cancer cell lines by Northern blot analysis. Clusterin will be further examined as a candidate TSG. ^ The second approach involved utilizing subtractive hybridization and hybrid affinity capture to generate pools of expressed sequence tags (ESTs) enriched for genes that are downregulated or deleted in PC and that map to specific regions of interest. We took advantage of a prostate cancer cell line (PC3) with a known HZD of a candidate TSG, CTNNA1 on 5q31, to develop and validate a model system. We then developed subtracted libraries enriched for 8p22 and 8p21 ESTs by this method, using two cell lines, MDAPCa-2b and PC3. The ESTs were cloned, and 40 were sequenced and evaluated for expression in normal prostate and PC cell lines. Three ESTs from the subtracted libraries, C2, C17 and F12, showed decreased expression in 29–57% of the prostate tumor cell lines studied, and will be further examined as candidate TSGs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinases are part of a complex network of signaling pathways that enable a cell to respond to changes in environmental conditions in a regulated and coordinated way. For example, Glycogen Synthase Kinase 3 beta (GSK3β) modulates conformational changes, protein-protein interaction, protein degradation, and activation of unique domains in proteins that transduce signals from the extracellular milieu to the nucleus. ^ In this project, I investigated the expression and function that GSK3β exhibits in prostate cells. The capacity of GSK3β to regulate two transcription factors (JUN and CREB), which are known to be inversely utilized in prostate tumor cells, was measured. JUN/AP1 is constitutively activated in PC-3 cells; whereas, CREB/CRE activity is ∼20 fold less than the former. GSK3β overexpression obliterates JUN/AP1 activity. With respect to CREB GSK3β increases CREB/CRE activity. Cellular levels of active GSK3β can determine whether JUN or CREB is preferentially active in the PC-3s. Theoretically, in response to a particular cellular context or stimulus, a cell may coordinate JUN and CREB function by regulating GSK3β.^ A comparison of various prostate cell lines showed that active GSK3β is less expressed in normal prostate epithelial cells than in tumor cells. Differentially expressed active (GSK3β) may correlate with progression of prostate carcinoma. If a known marker associated with carcinoma of the prostate could be shown to be regulated by GSK3β then, further study of GSK3β may lead to a better understanding of both possible prevention of the disease and improved therapy for advanced stages. ^ The androgen receptor (AR) is an intriguing phosphoprotein whose regulation is potentially determined by a variety of kinases. One of these is (GSK3β) I found that (GSK3β) is a regulator of the androgen receptor in both the unliganded and liganded states. It can inhibit AR function as measured by reporter assays. Also, GSK3β associates with the AR at the DNA binding domain because deletion constructs expressing either the n-terminus or the c-terminus (both having the DBD in common) immunoprecipitated with GSK3β. Increased understanding of how GSK3β functions in prostate cancer would provide clues into how (1) certain signal pathways are coordinated and (2) the androgen receptor may be regulated. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activator protein 2α (AP-2) is a transcription factor known to play a crucial role in the progression of malignant melanoma, colorectal carcinoma, and breast cancer. Several AP-2 target genes are known to be deregulated in prostate cancer, therefore, we hypothesize that loss AP-2 expression plays a causal role in prostate carcinogenesis. Immunofluorescent staining for AP-2 of 30 radical prostatectomy specimens demonstrated that while AP-2 was highly expressed in normal prostate epithelium, its expression was lost in most cases of high grade prostatic intraepithelial neoplasia (PIN), and all cases of prostate cancer studied. Additional analyses demonstrated that AP-2 was associated with normal luminal differentiation and it was not expressed in the basal cell layer. In cell lines, AP-2 was strongly expressed in immortalized normal prostate epithelial cells, whereas low expression was observed in the LNCaP, LNCaP-LN3, and PC3M-LN4 prostate cancer cell lines. Transfection of the highly tumorigenic and metastatic cell line PC3M-LN4 with the AP-2 gene significantly decreased tumor growth in the prostate of nude mice (p = 0.032) and inhibited metastases to the lymph nodes. Moreover, transfection of the low tumorigenic, low metastatic cell line LNCaP-LN3 with full length AP-2; resulted in complete inhibition of tumor incidence in the AP-2 transfectants (0/19) vs. neo control (10/16). A potential mechanism for this loss of tumorigenicity was the modulation of gene expression in prostate cancer cells that mimicked the normal phenotype. Analysis of differential expression between neo control- and AP-2-transfected cells in vitro and in tumors demonstrated low VEGF expression in AP-2 transfectants. We further demonstrated that AP-2 acted as a transcriptional repressor of the VEGF promoter by binding to a GC-rich region located between −88 and −66. This region contains an AP-2 consensus element overlapping two Sp1 consensus elements. We found that Sp3 and AP-2 bound to this region in a mutually exclusive manner to promote activation or repression. Increased VEGF expression has been observed in high grade PIN and in prostate cancer. Here we provide evidence that this early molecular change could be a result of loss of AP-2 expression in the prostatic epithelium. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. At present, prostate cancer screening (PCS) guidelines require a discussion of risks, benefits, alternatives, and personal values, making decision aids an important tool to help convey information and to help clarify values. Objective: The overall goal of this study is to provide evidence of the reliability and validity of a PCS anxiety measure and the Decisional Conflict Scale (DCS). Methods. Using data from a randomized, controlled PCS decision aid trial that measured PCS anxiety at baseline and DCS at baseline (T0) and at two-weeks (T2), four psychometric properties were assessed: (1) internal consistency reliability, indicated by factor analysis intraclass correlations and Cronbach's α; (2) construct validity, indicated by patterns of Pearson correlations among subscales; (3) discriminant validity, indicated by the measure's ability to discriminate between undecided men and those with a definite screening intention; and (4) factor validity and invariance using confirmatory factor analyses (CFA). Results. The PCS anxiety measure had adequate internal consistency reliability and good construct and discriminant validity. CFAs indicated that the 3-factor model did not have adequate fit. CFAs for a general PCS anxiety measure and a PSA anxiety measure indicated adequate fit. The general PCS anxiety measure was invariant across clinics. The DCS had adequate internal consistency reliability except for the support subscale and had adequate discriminate validity. Good construct validity was found at the private clinic, but was only found for the feeling informed subscale at the public clinic. The traditional DCS did not have adequate fit at T0 or at T2. The alternative DCS had adequate fit at T0 but was not identified at T2. Factor loadings indicated that two subscales, feeling informed and feeling clear about values, were not distinct factors. Conclusions. Our general PCS anxiety measure can be used in PCS decision aid studies. The alternative DCS may be appropriate for men eligible for PCS. Implications: More emphasis needs to be placed on the development of PCS anxiety items relating to testing procedures. We recommend that the two DCS versions be validated in other samples of men eligible for PCS and in other health care decisions that involve uncertainty. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations into the molecular basis of glioblastoma multiforme led to the identification of a putative tumor suppressor gene, MMAC/ PTEN. Initial studies implicated MMAC/PTEN in many different tumor types, and identified a protein phosphatase motif in its sequence. This project aimed to identify the biological and biochemical functions of MMAC/PTEN by transiently expressing the gene in cancer cells that lack a functional gene product. ^ Expression of MMAC/PTEN mildly suppressed the growth of U251 human glioma cells and abrogated the growth advantage mediated by overexpression of the epidermal growth factor receptor (EGFR). Immunoblotting demonstrated that MMAC/PTEN expression did not affect the phosphorylation of the EGFR itself, or the intermediates of several downstream signaling pathways. However, MMAC/PTEN expression significantly reduced the phosphorylation and catalytic activity of the proto-oncogene Akt/PKB. While Akt/PKB regulates the survival of many cell types, expression of MMAC/PTEN did not induce apoptosis in adherent U251 cells. Instead, MMAC/PTEN expression sensitized the cells to apoptosis when maintained in suspension (anoikis). As the survival of suspended cells is one of the hallmarks leading to metastasis, MMAC/PTEN expression was examined in a system in which metastasis is more clinically relevant, prostate cancer. ^ Expression of MMAC/PTEN in both LNCaP and PC3-P human prostate cancer cells specifically inhibited Akt/PKB phosphorylation. MMAC/PTEN expression in LNCaP cells resulted in a profound inhibition of growth that was significantly greater than that achieved with expression of p53. Expression of MMAC/PTEN in PC3-P cells resulted in greater growth inhibition than was observed in U251 glioma cells, but less than was observed in LNCaP cells, or upon p53 expression. To determine if MMAC/PTEN could function as a tumor suppressor in vivo, the effects of MMAC/PTEN expression on PC3-P cells implanted orthotopically in nude mice were examined. The ex-vivo expression of MMAC/PTEN did not decrease tumor incidence, but it did significantly decrease tumor size and metastasis. In-vivo expression of MMAC/PTEN in pre-established PC3-P tumors did not significantly inhibit tumor incidence or size, but did inhibit metastasis formation. ^ These studies demonstrate that MMAC/PTEN is a novel and important tumor suppressor gene, which functions to downregulate an important cell survival signaling pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EphA2, also known as ECK (epithelial cell kinase), is a transmembrane receptor tyrosine kinase that is commonly over-expressed in cancers such as those of the prostate, colon, lung, and breast. For breast cancers, EphA2 overexpression is most prominent in the ER-negative subtype, and is associated with a higher rate of lung metastasis. Studies conducted to demonstrate the role of EphA2 in a non-cancerous environment have shown that it is very important in developmental processes, but not in normal adult tissues. These results make EphA2 a prospective therapeutic target since new therapies are needed for the more aggressive ER-negative breast cancers. A panel of breast cancer cell lines was screened for expression of EphA2 by immunoblotting. Several of the overexpressing cell lines, including BT549, MDA-MB-231, and HCC 1954 were selected for experiments utilizing siRNA for transient knockdown and shRNA for stable knockdown. Targeted knockdown of EphA2 was measured using RT-PCR and immunoblotting techniques. Here, the functions of EphA2 in the process of metastasis have been elucidated using in vitro assays that indicate cancer cell metastatic potential and in vivo studies that reveal the effect of EphA2 on mammary fat pad tumor growth, vessel formation, and the effect of using EphA2-targeting siRNA on pre-established mammary fat pad tumors. A decrease in EphA2 expression both in vitro and in vivo correlated with reduced migration and experimental metastasis of breast cancer cells. Current work is being done to investigate the mechanism behind EphA2’s participation in some of these processes. These studies are important because they have contributed to understanding the role that EphA2 plays in the progression of breast cancers to a metastatic state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To determine whether a 3-mm isotropic target margin adequately covers the prostate and seminal vesicles (SVs) during administration of an intensity-modulated radiation therapy (IMRT) treatment fraction, assuming that daily image-guided setup is performed just before each fraction. MATERIALS AND METHODS: In-room computed tomographic (CT) scans were acquired immediately before and after a daily treatment fraction in 46 patients with prostate cancer. An eight-field IMRT plan was designed using the pre-fraction CT with a 3-mm margin and subsequently recalculated on the post-fraction CT. For convenience of comparison, dose plans were scaled to full course of treatment (75.6 Gy). Dose coverage was assessed on the post-treatment CT image set. RESULTS: During one treatment fraction (21.4+/-5.5 min), there were reductions in the volumes of the prostate and SVs receiving the prescribed dose (median reduction 0.1% and 1.0%, respectively, p<0.001) and in the minimum dose to 0.1 cm(3) of their volumes (median reduction 0.5 and 1.5 Gy, p<0.001). Of the 46 patients, three patients' prostates and eight patients' SVs did not maintain dose coverage above 70 Gy. Rectal filling correlated with decreased percentage-volume of SV receiving 75.6, 70, and 60 Gy (p<0.02). CONCLUSIONS: The 3-mm intrafractional margin was adequate for prostate dose coverage. However, a significant subset of patients lost SV dose coverage. The rectal volume change significantly affected SV dose coverage. For advanced-stage prostate cancers, we recommend to use larger margins or improve organ immobilization (such as with a rectal balloon) to ensure SV coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein (p44/WDR77) and found that it plays a critical role in the control of proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44 gene in the mouse brain caused accelerated aging with dramatic astrogliosis. The p44/WDR77 is expressed in astrocytes and loss of p44/WDR77 expression in astrocytes leads to astrogliosis. Our results reveal a novel role of p44/WDR77 in astrocytes, which may explain the well-documented role of androgens in suppression of astrogliosis. While many of detailed mechanisms of astrocyte activation remain to be elucidated, a number pathways have been implicated in astrocyte activation including p21Cip1 and the NF-kB pathway. Astrocytic activation induced by p44/WDR77 gene deletion was associated with a significant increase of p21Cip1 expression and NF-kB activation characterized by p65 nuclear localization. We found that down-regulation of p21Cip1 expression inhibited astrocyte activation induced by the p44/WDR77 deletion and was accompanied by a decreased p65 nuclear localization. While p21Cip1 role in astrocyte activation and NF-kB activation is not well understood, studies of other cell cycle regulators have implicated cell cycle control systems as modulators of astrocyte activation, thus p21Cip1 could induce secondary effect to induce p65 nuclear localization. However, p65 knockdown completely relieved the inhibition of astrocyte growth induced by the p44/WDR77 deletion, while p21Cip1 knockdown only partially recovered this inhibition. Thus, NF-kB activity performs additional regulatory actions not mediated by p21Cip1. These analyses imply that p4/WDR77 suppresses astrocyte activation through modulating p21Cip1 expression and NF-kB activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the gynecologic malignancies, epithelial ovarian tumors are the leading cause of death. For the past few decades, the only treatment has involved surgical resection of the tumor and/or general chemotherapies. In an attempt to improve treatment options, we have shown that several oncogenes that are overexpressed in ovarian cancer, PI3K, PKCiota, and cyclin E, all of which have been shown to lead to a poor prognosis and decreased survival, converge into a single pathway that could potentially be targeted therapeutically. Because of the ability of either PKCiota or cyclin E overexpression to independently induce anchorage-independent growth, a hallmark of cancer, we hypothesized that targeting PKCiota expression in ovarian cancer cells could induce a reversion of the transformed phenotype through down regulation of cyclin E. To test this hypothesis, we first established a correlation between PKCiota and cyclin E in a panel of 20 ovarian cancer cell lines. To show that PKCiota is upstream of cyclin E, PKCiota was stably knocked down using RNAi in IGROV cells (epithelial ovarian cancer cell line of serous histology). The silencing of PKCiota resulted in decreased expression of cell cycle drivers, such as cyclin D1/E and CDK2/4, and an increase in p27. These alteration in the regulators of the cell cycle resulted in a decrease in both proliferation and anchorage-independent growth, which was specifically through cyclin E, as determined by a rescue experiment. We also found that the mechanism of cyclin E regulation by PKCiota was at the level of degradation rather than transcription. Using two inhibitors to PI3K, we found that both the active form of PKCiota and total cyclin E levels decreased, implying that the PKCiota/cyclin E pathway is downstream from PI3K. In conclusion, we have identified a novel pathway in epithelial ovarian tumorigenesis (PI3K à PKCiota à Cyclin E à anchorage-independent growth), which could potentially be targeted therapeutically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusion of nonmetastatic murine melanoma K1735 C19H cells with metastatic human melanoma A375 C15N cells resulted in a hybrid (termed H7) which was highly metastatic in a nude mouse model. The H7 hybrid retained chromosome 17 as the sole intact human chromosome in the cell. A lung bioassay showed that the K1735 C19H cells were present in the lungs of nude mice with s.c. tumors, yet at 6-weeks after tumor resection, no cells remained in the lung and therefore did not form lung metastases. Examination of various phenotypic properties such as in vivo and in vitro growth demonstrated that phenotypically the H7 hybrid was most like the K1735 C19H cell line except for its metastatic ability. In contrast the H7 hybrid cells containing single or multiple copies of human chromosome 17 with a point mutation at codon 249 (arg-gly) of the p53 gene, readily formed lung metastases. A plasmid containing the human p53 from the H7 hybrid and four other contructs with mutations at codon 143 (val-arg), 175 (arg-his), 249 (arg-ser) and 273 (arg-his) were transfected into K1735 C19H cells. K1735 C19H cells expressing human p53 genes with mutations at codons 249, both the arg-ser mutation and the mutation from the H7 hybrid and 273 produced significantly more lung metastases.^ In vitro assays demonstrated that responses to various cytotoxic and DNA damaging agents varied with the presence of mutant p53 and with the type of agent used. When cultured in mouse lung-conditioned medium, the K1735 C19H cell line was growth-inhibited, while cells containing a mutant human p53 (either on the whole chromosome 17, as in the H7 hybrid cells or from a stably transfected construct) were growth stimulated. Western blot analysis of lung-conditioned media derived from either 6-month or 15-month old mice has detected high levels of soluble Fas ligand in the medium from older animals. Comparison of the levels of Fas receptor on the K1735 C19H cell line and the H7 hybrid were almost identical, but 50% of the K1735 C19H cells were killed in the presence of anti-Fas antibody as opposed to 7% of the H7 hybrid cells. The growth-inhibitory effects of the lung-conditioned medium on the K1735 C19H cells were abrogated by coculture with Fas-Fc, which competes with the Fas ligand for receptor binding. Growth-inhibition of the K1735 C19H was 54% when cultured in 60 $\mu$g/0.2 ml lung-conditioned medium and a control Fc, with only 9% inhibition in 60 $\mu$g/0.2 ml lung-conditioned medium and Fas-Fc. Growth of the H7 cells and K1735 C19H cells transfected with various mutant human p53 genes were unchanged by the presence of either the control Fc or the Fas-Fc. This indicates that the presence of human chromosome 17, and mutant p53 in part protects the cells from Fas:Fas ligand induced apoptosis, and allows the growth of lung metastases. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertebrate $\beta$-galactoside-binding lectins galectin-1 and galectin-3 have been proposed to function in diverse cellular processes such as adhesion, proliferation, differentiation, and tumorigenesis. Experiments were initiated to further study the functional properties of these molecules. A prostate cancer cell line, LNCaP, was identified which expressed neither galectin. This line was stably transfected with cDNA for either galectin-1 or galectin-3. The resultant clones were used to study effects on critical cell processes. LNCaP cells expressing galectin-1 on the surface were found to bind more rapidly than control lines to the human extracellular matrix proteins laminin and fibronectin, although overall binding was not increased. To analyze effects on differentiation, LNCaP cells were studied which had either been transfected with galectin-1 or which had been induced to express endogenous galectin-1 by treatment with the differentiation agent sodium butyrate. In both cases, cells displayed a slower rate of growth and increased rate of apoptosis. A transient decrease in expression of prostate specific antigen was seen in the butyrate treated cells but not in the transfected cells. To investigate the role of galectins in the process of malignant transformation and progression, immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded sections of human prostate tissue, the premalignant lesion prostatic intraepithelial neoplasia, primary adenocarcinoma of the prostate, and foci of metastatic prostate cancer. Galectin-1 expression was relatively constant throughout in contrast to galectin-3 which demonstrated significantly less expression in primary and metastatic tumors. LNCaP cells transfected with galectin-3 cDNA displayed lower proliferation rates, increased spontaneous apoptosis, and G1 growth phase arrest compared to controls. Four of six galectin-3 lines tested were less tumorigenic in nude mice than controls. The following conclusions are drawn regarding the role of galectin-1 and galectin-3 expression in the context of prostate cancer: (1) galectin-1 may participate in the early stages of cancer cell adhesion to extracellular matrix proteins; (2) galectin-1 expression results in a differentiated phenotype and may contribute to differentiation induction by butyrate; (3) galectin-3 expression correlates inversely with prostate cell tumorigenesis and prostate cancer metastasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike infections occurring during periods of chemotherapy-induced neutropenia, postoperative infections in patients with solid malignancy remain largely understudied. The purpose of this population-based study was to evaluate the clinical and economic burden, as well as the relationship of hospital surgical volume and outcomes associated with serious postoperative infection (SPI) – i.e., bacteremia/sepsis, pneumonia, and wound infection – following resection of common solid tumors.^ From the Texas Discharge Data Research File, we identified all Texas residents who underwent resection of cancer of the lung, esophagus, stomach, pancreas, colon, or rectum between 2002 and 2006. From their billing records, we identified ICD-9 codes indicating SPI and also subsequent SPI-related readmissions occurring within 30 days of surgery. Random-effects logistic regression was used to calculate the impact of SPI on mortality, as well as the association between surgical volume and SPI, adjusting for case-mix, hospital characteristics, and clustering of multiple surgical admissions within the same patient and patients within the same hospital. Excess bed days and costs were calculated by subtracting values for patients without infections from those with infections computed using multilevel mixed-effects generalized linear model by fitting a gamma distribution to the data using log link.^ Serious postoperative infection occurred following 9.4% of the 37,582 eligible tumor resections and was independently associated with an 11-fold increase in the odds of in-hospital mortality (95% Confidence Interval [95% CI], 6.7-18.5, P < 0.001). Patients with SPI required 6.3 additional hospital days (95% CI, 6.1 - 6.5) at an incremental cost of $16,396 (95% CI, $15,927–$16,875). There was a significant trend toward lower overall rates of SPI with higher surgical volume (P=0.037). ^ Due to the substantial morbidity, mortality, and excess costs associated with SPI following solid tumor resections and given that, under current reimbursement practices, most of this heavy burden is borne by acute care providers, it is imperative for hospitals to identify more effective prophylactic measures, so that these potentially preventable infections and their associated expenditures can be averted. Additional volume-outcomes research is also needed to identify infection prevention processes that can be transferred from higher- to lower-volume providers.^