6 resultados para Transfer of ideas

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-GM1 antibodies are present in some patients with autoimmune neurological disorders. These antibodies are most frequently associated with acute immune neuropathy called Guillain-Barré syndrome (GBS). Some clinical studies associate the presence of these antibodies with poor recovery in GBS. The patients with incomplete recovery have failure of nerve repair, particularly axon regeneration. Our previous work indicates that monoclonal antibodies can inhibit axon regeneration by engaging cell surface gangliosides (Lehmann et al., 2007). We asked whether passive transfer of human anti-GM1 antibodies from patients with GBS modulate axon regeneration in an animal model. Human anti-GM1 antibodies were compared with other GM1 ligands, cholera toxin B subunit and a monoclonal anti-GM1 antibody. Our results show that patient derived anti-GM1 antibodies and cholera toxin beta subunit impair axon regeneration/repair after PNS injury in mice. Comparative studies indicated that the antibody/ligand-mediated inhibition of axon regeneration is dependent on antibody/ligand characteristics such as affinity-avidity and fine specificity. These data indicate that circulating immune effectors such as human autoantibodies, which are exogenous to the nervous system, can modulate axon regeneration/nerve repair in autoimmune neurological disorders such as GBS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcell-mediated chromosome transfer is a method of gene transfer which allows for the introduction of single or small groups of intact chromosomes into recipient host cells. Microcell transfer was first performed by Fournier and Ruddle using rodent microcells and various recipient cells. Expansion of this technology to include the transfer of normal human genetic material has been hindered because large micronucleate populations from diploid human cells have been unobtainable. This dissertation research describes, however, the methods for production of micronuclei in 40-60% of normal human fibroblasts. Once micronucleate cells were obtained, they were enucleated by centrifugation in the presence of Cytochalasin B; the microcells were then purified and fused to recipient mouse (LMTK('-)) cells using a new fusion protocol employing polyethylene glycol containing phytohemagglutinin. Microcell clones were isolated from the HAT selection system. Alkaline Giemsa staining performed on these hybrids indicated the presence of a single human chromosome in each of seven microcell clones from three separate experiments. That chromosome was further identified by G banding analysis to be human chromosome #17, which codes for thymidine kinase. The time course for production of these hybrids from fusion to karyotypic analysis was 6 weeks. The viability of the transferred human genetic material was assessed by electrophoretic isozyme analysis.^ Subsequent experiments were performed in an attempt to optimize the transfer frequency for the thymidine kinase gene using this system. Results indicated that the frequency could be increased from < 1 x 10('-6) in initial experiments to 2 x 10('-5) in the latest experiment. Analyses were also conducted to determine the number of chromosomes per isolated microcell as well as to investigate the stability of the transferred human chromosome in the mouse genome. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation focuses on Project HOPE, an American medical aid agency, and its work in Tunisia. More specifically this is a study of the implementation strategies of those HOPE sponsored projects and programs designed to solve the problems of high morbidity and infant mortality rates due to environmentally related diarrheal and enteric diseases. Several environmental health programs and projects developed in cooperation with Tunisian counterparts are described and analyzed. These include (1) a paramedical manpower training program; (2) a national hospital sanitation and infection control program; (3) a community sewage disposal project; (4) a well reconstruction project; and (5) a solid-waste disposal project for a hospital.^ After independence, Tunisia, like many developing countries, encountered several difficulties which hindered progress toward solving basic environmental health problems and prompted a request for aid. This study discusses the need for all who work in development programs to recognize and assess those difficulties or constraints which affect the program planning process, including those latent cultural and political constraints which not only exist within the host country but within the aid agency as well. For example, failure to recognize cultural differences may adversely affect the attitudes of the host staff towards their work and towards the aid agency and its task. These factors, therefore, play a significant role in influencing program development decisions and must be taken into account in order to maximize the probability of successful outcomes.^ In 1969 Project HOPE was asked by the Tunisian government to assist the Ministry of Health in solving its health manpower problems. HOPE responded with several programs, one of which concerned the training of public health nurses, sanitary technicians, and aids at Tunisia's school of public health in Nabeul. The outcome of that program as well as the strategies used in its development are analyzed. Also, certain questions are addressed such as, what should the indicators of success be, and when is the time right to phase out?^ Another HOPE program analyzed involved hospital sanitation and infection control. Certain generic aspects of basic hospital sanitation procedures were documented and presented in the form of a process model which was later used as a "microplan" in setting up similar programs in other Tunisian hospitals. In this study the details of the "microplan" are discussed. The development of a nation-wide program without any further need of external assistance illustrated the success of HOPE's implementation strategies.^ Finally, although it is known that the high incidence of enteric disease in developing countries is due to poor environmental sanitation and poor hygiene practices, efforts by aid agencies to correct these conditions have often resulted in failure. Project HOPE's strategy was to maximize limited resources by using a systems approach to program development and by becoming actively involved in the design and implementation of environmental health projects utilizing "appropriate" technology. Three innovative projects and their implementation strategies (including technical specifications) are described.^ It is advocated that if aid agencies are to make any progress in helping developing countries basic sanitation problems, they must take an interdisciplinary approach to progrm development and play an active role in helping counterparts seek and identify appropriate technologies which are socially and economically acceptable. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphatidylinositol transfer proteins (PI-TP's) catalyze the transfer of phosphatidylinositol and phosphatidylcholine between membranes in vitro. However the in vivo function of these proteins is unknown. In this thesis we have used a combined biochemical and genetic approach to determine the importance of PI-TP in vivo. An oligonucleotide based on the amino terminal sequence of the PI-TP from Saccharomyces cerevisiae, was used to screen a yeast genomic library for the gene encoding PI-TP (PIT1 gene). Yeast strains transformed with the positive clones showed overproduction of transfer activities and transfer protein in the 100,000 x g supernatants. The 5$\sp\prime$ terminus of the PIT1 gene correlates with the predicted codons for residues 3-30 of the determined protein sequence. Tetrad analysis of a heterozygous diploid (PIT1/pit1::LEU2) revealed that the PIT1 gene is essential for cell growth. Non-viable spores could be rescued by transformation of the above diploid prior to sporulation, with a plasmid borne copy of the wild type gene. Sequencing of the entire PIT1 gene has revealed that the PIT1 gene is identical to the SEC14 gene. The sec14 ts mutant which exhibits conditional defects at the Golgi stage of protein secretion, is also temperature sensitive for PI-TP activity in vitro. These findings represent the first instance in which a physiological function has been assigned to any phospholipid transfer protein. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown that liposomal amphotericin B (L-AmpB) decreased renal toxicity and maintains the antifungal activity of amphotericin B (AmpB). We have also observed that L-AmpB is predominantly associated with high density lipoproteins (HDL) as compared to Fungizone (AmpB + deoxycholate). The present experiments were designed to assess the biological relevance of transferring AmpB to HDL. We observed that AmpB was less toxic to kidney cells when associated with HDL, however AmpB toxicity was maintained when associated with LDL. To further understand how HDL-associated AmpB reduces renal cell toxicity the presence of HDL and LDL receptors in this cell line was determined. We observed that these cells expressed high and low affinity LDL receptors, but only low affinity HDL receptors. The reduced renal cell toxicity of HDL-associated AmpB may be due to its lack of interaction with renal cells because of the absence of HDL receptors. Since AmpB interacts with cholesteryl esters whose transfer among lipoproteins is regulated by Lipid transfer Protein (LTP), the role of LTP on the distribution of AmpB to HDL and LDL was next examined. We found that negatively charged liposomes significantly reduced LTP-mediated transfer of CE between HDL and LDL, independent of the presence of AmpB, while Fungizone only significantly inhibited CE transfer at one concentration tested (20$\mu$g/ml). Therefore, we believe that the decreased renal toxicity of L-AmpB is related to its predominant distribution to HDL which is regulated by the inhibition of LTP activity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA mediated gene transfection is an important tool for moving and isolating genes from one cell type and putting them into a foreign genetic background. DNA transfection studies have been done routinely in many laboratories to identify and isolate transforming sequences in human tumors and tumor cell lines. A second technique, microcell-mediated chromosome transfer, allows the transfer of small numbers of intact human chromosome from one cell to another. This work was done to compare the efficiency of these two techniques in the transformation of NIH 3T3 mouse fibroblast cells.^ My intent in comparing these two techniques was to see if there was a difference in the transforming capability of DNA which has been purified of all associated protein and RNAs, and that of DNA which is introduced into a cell in its native form, the chromosome. If chromosomal sequences were capable of transforming the 3T3 cells in culture, the method could then be used as a way to isolate the relevant tumorigenic chromosomes from human tumors.^ The study shows, however, that even for those cell lines that contain transforming sequences identified by DNA-mediated gene transfer, those same sequences were unable to transform 3T3 cells when introduced to the cells by somatic fusion of human tumor microcells. I believe that the human transforming sequences in their original genetic conformation are not recognized by the mouse cell as genes which should be expressed; therefore, no noticeable transformation event was selected by this technique. ^