8 resultados para Towards Seamless Integration of Geoscience Models and Data
em DigitalCommons@The Texas Medical Center
Resumo:
One of the broad objectives of the Nigerian health service, vigorously being pursued at all levels of government, is to make comprehensive health care available and accessible to the population at the lowest possible cost, within available resources. Some state governments in the federation have already introduced free medical service as a practical way to remove financial barriers to access and in turn to encourage greater utilization of publicly funded care facilities.^ To aid health planners and decision makers in identifying a shorter corridor through which urban dwellers can gain access to comprehensive health care, a health interview survey of the metropolitan Lagos was undertaken. The primary purpose was to ascertain the magnitude of access problems which urban households face in seeking care from existing public facilities at the time of need. Six categories of illness chosen from the 1975 edition of the International Classification of Disease were used as indicators of health need.^ Choice of treatment facilities in response to illness episode was examined in relation to distance, travel time, time of use and transportation experiences. These were graphically described. The overall picture indicated that distance and travel time coexist with transportation problems in preventing a significant segment of those in need of health care from benefitting in the free medical service offered in public health facilities. Within this milieu, traditional medicine and its practitioners became the most preferred alternative. Recommendations were offered for action with regard to decentralization of general practitioner (GP) consultations in general hospitals and integration of traditional medicine and its practitioners into public health service. ^
Resumo:
Cultural models of the domains healing and health are important in how people understand health and their behavior regarding it. The biomedicine model has been predominant in Western society. Recent popularity of holistic health and alternative healing modalities contrasts with the biomedical model and the assumptions upon which that model has been practiced. The holistic health movement characterizes an effort by health care providers and others such as nurses to expand the biomedical model and has often incorporated alternative modalities. This research described and compared the cultural models of healing of professional nurses and alternative healers. A group of nursing faculty who promote a holistic model were compared to a group of healers using healing touch. Ethnographic methods of participant observation, free listing and pile sort were used. Theoretical sampling in the free listings reached saturation at 18 in the group of nurses and 21 in the group of healers. Categories consistent for both groups emerged from the data. These were: physical, mental, attitude, relationships, spiritual, self management, and health seeking including biomedical and alternative resources. The healers had little differentiation between the concepts health and healing. The nurses, however, had more elements in self management for health and in health seeking for healing. This reflects the nurse's role in facilitating the shift in locus of responsibility between health and healing. The healers provided more specific information regarding alternative resources. The healer's conceptualization of health was embedded in a spiritual belief system and contrasted dramatically with that of biomedicine. The healer's models also contrasted with holistic health in the areas of holism, locus of responsibility, and dealing with uncertainty. The similarity between the groups and their dissimilarity to biomedicine suggest a larger cultural shift in beliefs regarding health care. ^
Resumo:
Radiotherapy involving the thoracic cavity and chemotherapy with the drug bleomycin are both dose limited by the development of pulmonary fibrosis. From evidence that there is variation in the population in susceptibility to pulmonary fibrosis, and animal data, it was hypothesized that individual variation in susceptibility to bleomycin-induced, or radiation-induced, pulmonary fibrosis is, in part, genetically controlled. In this thesis a three generation mouse genetic model of C57BL/6J (fibrosis prone) and C3Hf/Kam (fibrosis resistant) mouse strains and F1 and F2 (F1 intercross) progeny derived from the parental strains was developed to investigate the genetic basis of susceptibility to fibrosis. In the bleomycin studies the mice received 100 mg/kg (125 for females) of bleomycin, via mini osmotic pump. The animals were sacrificed at eight weeks following treatment or when their breathing rate indicated respiratory distress. In the radiation studies the mice were given a single dose of 14 or 16 Gy (Co$\sp{60})$ to the whole thorax and were sacrificed when moribund. The phenotype was defined as the percent of fibrosis area in the left lung as quantified with image analysis of histological sections. Quantitative trait loci (QTL) mapping was used to identify the chromosomal location of genes which contribute to susceptibility to bleomycin-induced pulmonary fibrosis in C57BL/6J mice compared to C3Hf/Kam mice and to determine if the QTL's which influence susceptibility to bleomycin-induced lung fibrosis in these progenitor strains could be implicated in susceptibility to radiation-induced lung fibrosis. For bleomycin, a genome wide scan revealed QTL's on chromosome 17, at the MHC, (LOD = 11.7 for males and 7.2 for females) accounting for approximately 21% of the phenotypic variance, and on chromosome 11 (LOD = 4.9), in male mice only, adding 8% of phenotypic variance. The bleomycin QTL on chromosome 17 was also implicated for susceptibility to radiation-induced fibrosis (LOD = 5.0) and contributes 7% of the phenotypic variance in the radiation study. In conclusion, susceptibility to both bleomycin-induced and radiation-induced pulmonary fibrosis are heritable traits, and are influenced by a genetic factor which maps to a genomic region containing the MHC. ^
Resumo:
A census of 925 U.S. colleges and universities offering masters and doctorate degrees was conducted in order to study the number of elements of an environmental management system as defined by ISO 14001 possessed by small, medium and large institutions. A 30% response rate was received with 273 responses included in the final data analysis. Overall, the number of ISO 14001 elements implemented among the 273 institutions ranged from 0 to 16, with a median of 12. There was no significant association between the number of elements implemented among institutions and the size of the institution (p = 0.18; Kruskal-Wallis test) or among USEPA regions (p = 0.12; Kruskal-Wallis test). The proportion of U.S. colleges and universities that reported having implemented a structured, comprehensive environmental management system, defined by answering yes to all 16 elements, was 10% (95% C.I. 6.6%–14.1%); however 38% (95% C.I. 32.0%–43.8%) reported that they had implemented a structured, comprehensive environmental management system, while 30.0% (95% C.I. 24.7%–35.9%) are planning to implement a comprehensive environmental management system within the next five years. Stratified analyses were performed by institution size, Carnegie Classification and job title. ^ The Osnabruck model, and another under development by the South Carolina Sustainable Universities Initiative, are the only two environmental management system models that have been proposed specifically for colleges and universities, although several guides are now available. The Environmental Management System Implementation Model for U.S. Colleges and Universities developed is an adaptation of the ISO 14001 standard and USEPA recommendations and has been tailored to U.S. colleges and universities for use in streamlining the implementation process. In using this implementation model created for the U.S. research and academic setting, it is hoped that these highly specialized institutions will be provided with a clearer and more cost-effective path towards the implementation of an EMS and greater compliance with local, state and federal environmental legislation. ^
Resumo:
Strategies are compared for the development of a linear regression model with stochastic (multivariate normal) regressor variables and the subsequent assessment of its predictive ability. Bias and mean squared error of four estimators of predictive performance are evaluated in simulated samples of 32 population correlation matrices. Models including all of the available predictors are compared with those obtained using selected subsets. The subset selection procedures investigated include two stopping rules, C$\sb{\rm p}$ and S$\sb{\rm p}$, each combined with an 'all possible subsets' or 'forward selection' of variables. The estimators of performance utilized include parametric (MSEP$\sb{\rm m}$) and non-parametric (PRESS) assessments in the entire sample, and two data splitting estimates restricted to a random or balanced (Snee's DUPLEX) 'validation' half sample. The simulations were performed as a designed experiment, with population correlation matrices representing a broad range of data structures.^ The techniques examined for subset selection do not generally result in improved predictions relative to the full model. Approaches using 'forward selection' result in slightly smaller prediction errors and less biased estimators of predictive accuracy than 'all possible subsets' approaches but no differences are detected between the performances of C$\sb{\rm p}$ and S$\sb{\rm p}$. In every case, prediction errors of models obtained by subset selection in either of the half splits exceed those obtained using all predictors and the entire sample.^ Only the random split estimator is conditionally (on $\\beta$) unbiased, however MSEP$\sb{\rm m}$ is unbiased on average and PRESS is nearly so in unselected (fixed form) models. When subset selection techniques are used, MSEP$\sb{\rm m}$ and PRESS always underestimate prediction errors, by as much as 27 percent (on average) in small samples. Despite their bias, the mean squared errors (MSE) of these estimators are at least 30 percent less than that of the unbiased random split estimator. The DUPLEX split estimator suffers from large MSE as well as bias, and seems of little value within the context of stochastic regressor variables.^ To maximize predictive accuracy while retaining a reliable estimate of that accuracy, it is recommended that the entire sample be used for model development, and a leave-one-out statistic (e.g. PRESS) be used for assessment. ^
Resumo:
Making healthcare comprehensive and more efficient remains a complex challenge. Health Information Technology (HIT) is recognized as an important component of this transformation but few studies describe HIT adoption and it's effect on the bedside experience by physicians, staff and patients. This study applied descriptive statistics and correlation analysis to data from the Patient-Centered Medical Home National Demonstration Project (NDP) of the American Academy of Family Physicians. Thirty-six clinics were followed for 26 months by clinician/staff questionnaires and patient surveys. This study characterizes those clinics as well as staff and patient perspectives on HIT usefulness, the doctor-patient relationship, electronic medical record (EMR) implementation, and computer connections in the practice throughout the study. The Global Practice Experience factor, a composite score related to key components of primary care, was then correlated to clinician and patient perspectives. This study found wide adoption of HIT among NDP practices. Patient perspectives on HIT helpfulness on the doctor-patient showed a suggestive trend that approached statistical significance (p = 0.172). Clinicians and staff noted successful integration of EMR into clinic workflow and their perception of helpfulness to the doctor-patient relationship show a suggestive increase also approaching statistical significance (p=0.06). GPE was correlated with clinician/staff assessment of a helpful doctor-patient relationship midway through the study (R 0.460, p = 0.021) with the remaining time points nearing statistical significance. GPE was also correlated to both patient perspectives of EMR helpfulness in the doctor-patient relationship (R 0.601, p = 0.001) and computer connections (R 0.618, p = 0.0001) at the start of the study. ^
Resumo:
Mixture modeling is commonly used to model categorical latent variables that represent subpopulations in which population membership is unknown but can be inferred from the data. In relatively recent years, the potential of finite mixture models has been applied in time-to-event data. However, the commonly used survival mixture model assumes that the effects of the covariates involved in failure times differ across latent classes, but the covariate distribution is homogeneous. The aim of this dissertation is to develop a method to examine time-to-event data in the presence of unobserved heterogeneity under a framework of mixture modeling. A joint model is developed to incorporate the latent survival trajectory along with the observed information for the joint analysis of a time-to-event variable, its discrete and continuous covariates, and a latent class variable. It is assumed that the effects of covariates on survival times and the distribution of covariates vary across different latent classes. The unobservable survival trajectories are identified through estimating the probability that a subject belongs to a particular class based on observed information. We applied this method to a Hodgkin lymphoma study with long-term follow-up and observed four distinct latent classes in terms of long-term survival and distributions of prognostic factors. Our results from simulation studies and from the Hodgkin lymphoma study demonstrated the superiority of our joint model compared with the conventional survival model. This flexible inference method provides more accurate estimation and accommodates unobservable heterogeneity among individuals while taking involved interactions between covariates into consideration.^