5 resultados para Total electron content (TEC)
em DigitalCommons@The Texas Medical Center
Resumo:
In this dissertation, the cytogenetic characteristics of bone marrow cells from 41 multiple myeloma patients were investigated. These cytogenetic data were correlated with the total DNA content as measured by flow cytometry. Both the cytogenetic information and DNA content were then correlated with clinical data to determine if diagnosis and prognosis of multiple myeloma could be improved.^ One hundred percent of the patients demonstrated abnormal chromosome numbers per metaphase. The average chromosome number per metaphase ranged from 42 to 49.9, with a mean of 44.99. The percent hypodiploidy ranged from 0-100% and the percent hyperdiploidy from 0-53%. Detailed cytogenetic analyses were very difficult to perform because of the paucity of mitotic figures and the poor chromosome morphology. Thus, detailed chromosome banding analysis on these patients was impossible.^ Thirty seven percent of the patients had normal total DNA content, whereas 63% had abnormal amounts of DNA (one patient with less than normal amounts and 25 patients with greater than normal amounts of DNA).^ Several clinical parameters were used in the statistical analyses: tumor burden, patient status at biopsy, patient response status, past therapy, type of treatment and percent plasma cells. Only among these clinical parameters were any statistically significant correlations found: pretreatment tumor burden versus patient response, patient biopsy status versus patient response and past therapy versus patient response.^ No correlations were found between percent hypodiploid, diploid, hyperdiploid or DNA content, and the patient response status, nor were any found between those patients with: (a) normal plasma cells, low pretreatment tumor mass burden and more than 50% of the analyzed metaphases with 46 chromosomes; (b) normal amounts of DNA, low pretreatment tumor mass burden and more than 50% of the metaphases with 46 chromosomes; (c) normal amounts of DNA and normal quantities of plasma cells; (d) abnormal amounts of DNA, abnormal amounts of plasma cells, high pretreatment tumor mass burden and less than 50% of the metaphases with 46 chromosomes.^ Technical drawbacks of both cytogenetic and DNA content analysis in these multiple myeloma patients are discussed along with the lack of correlations between DNA content and chromosome number. Refined chromosome banding analysis awaits technical improvements before we can understand which chromosome material (if any) makes up the "extra" amounts of DNA in these patients. None of the correlations tested can be used as diagnostic or prognostic aids for multiple myeloma. ^
Resumo:
The hydroxylation of N- and O-methyl drugs and a polycyclic hydrocarbon has been demonstrated in microsomes prepared from two transplantable Morris hepatomas (i.e., 7288C. t.c. and 5123 t.c.(H). The hydroxylation rates of the drug benzphetamine and the polycyclic hydrocarbon benzo {(alpha)} pyrene by tumor microsomes were inducible 2 to 3-fold and 2-fold, respectively by pretreatment of rats with phenobarbital/hydrocortisone. Hepatoma 5123t.c.(h) microsomal hydroxylation activities were more inducible after these pretreatments than hepatoma 7288C.t.c. Two chemotherapeutic drugs (cyclophosphamide and isophosphamide) were shown to be mutagenic after activation by the tumor hemogenate with the TA100 strain of Salmonella typhimurium bacteria. NADPH-cytochrome P-450 was purified from phenobarbital/hydrocortisone treated rat hepatoma 5123t.c.(H) microsomes 353-fold with a specific activity 63.6 nmol of cytochrome c reduced per min per mg of protein. The purified enzyme, has an apparent molecular weight of 79,500 daltons, and contained an equal molar ratio of FMN and FAD, with a total flavin content of 16.4 nmol per mg of protein. The purified enzyme also catalyzed electron transfer to artificial electron acceptors with the K(,m) values of the hepatoma reductase similar to those of purified liver reductase. The K(,m) value of the hepatoma reductase (13 uM) for NADPH was similar to that of purified liver reductase (5.0 uM). In addition the purified hepatoma reductase was immunochemically similar to the liver reductase.^ Hepatoma cytochrome P-450, the hemeprotein component of the hepatoma microsomes of rats pretreated with phenobarbital/hydrocortisone. The resolution of the six forms was achieved by the DE-53 ion-exchange chromatography, and further purified by hydroxyapatite. The six different fractions that contained P-450 activity, had specific contents from 0.47 to 1.75 nmol of cytochrome P-450 per mg of protein, and indicated a 2 to 9-fold purification as compared to the original microsomes. In addition, difference spectra, molecular weights and immunological results suggest there are at least six different forms of cytochrome P-450 in hepatoma 5123 t.c.(H). ^
Resumo:
Alpha and beta tubulin are essential proteins in all eukaryotic cells. To study how cells maintain coordinate levels of these two interacting proteins, we have used PCR to add a 9 amino acid epitope from influenza hemagglutinin protein onto the carboxyl terminus of $\alpha$1 and $\beta$1-tubulin. The chimeric tubulin genes (HA$\alpha$1 and HA$\beta$1) were transfected into CHO cells and cell lines that stably express each gene were selected. Cells transfected with HA-tubulin do not exhibit any gross changes in growth or morphology. Immunofluorescence analysis demonstrated that HA-tubulins incorporate into both cytoplasmic and spindle microtubules. A quantitative biochemical assay was used to show that HA-tubulins incorporate into microtubules to a normal extent and do not alter the steady state distribution of endogenous tubulin between monomer and polymer pools. Two-dimensional gel analysis of pulse-labeled cells indicated that when HA$\beta$1-tubulin is expressed at high levels, it slightly represses the synthesis of the endogenous $\beta$-tubulin but produces a small increase in the synthesis of $\alpha$-tubulin. Analysis of cells labeled to steady state showed that HA$\beta$1-tubulin accumulates to a similar level as the wild-type gene product, but together these polypeptides produce only a small increase in total tubulin content consistent with the increased synthesis of $\alpha$-tubulin. It thus appears that HA$\beta$1-tubulin successfully competes with endogenous $\beta$-tubulin for heterodimer formation and that free $\beta$-tubulin subunits (endogenous and HA$\beta$1) are selectively degraded to maintain coordinate amounts of $\alpha$- and $\beta$-tubulin. In addition, the increased synthesis of $\alpha$-tubulin suggested the existence of a mechanism to ensure coordinate synthesis of $\alpha$- and $\beta$-tubulin subunits. To analyze whether reciprocal changes in endogenous tubulin synthesis occur when $\alpha$-tubulin is overexpressed, stably transfected CHO cell lines were isolated in which HA$\alpha$1-tubulin represents 50% of the total $\alpha$-tubulin, and its relative abundance can be further increased to 85-90% by treatment with sodium butyrate. In contrast with results obtained using HA$\beta$1-tubulin, transfection of HA$\alpha$1-tubulin decreased the synthesis of endogenous $\alpha$-tubulin to 60% of normal with little or no change in $\beta$-tubulin synthesis. When the transfected cells were treated with sodium butyrate to further increase HA$\beta$1-tubulin production, a larger decrease in the synthesis of endogenous $\alpha$-tubulin (to 30% of normal) was observed. The repression on the synthesis of endogenous $\alpha$-tubulin polypeptide was found to be directly proportional to the expression of HA$\alpha$1-tubulin indicating the existence of an autoregulatory loop, where $\alpha$-tubulin inhibits its own synthesis. To determine whether overproduction of HA$\alpha$1-tubulin affected the transcription, message stability or translation of endogenous $\alpha$-tubulin, the steady state levels of $\alpha$-tubulin mRNA were analyzed by ribonuclease protection assays. The results showed that the steady state level of $\alpha$-tubulin mRNA is not affected by the overexpression of HA$\alpha$1-tubulin, indicating that the repression is translational. The results are compatible with a model in which $\beta$-tubulin synthesis is largely unperturbed by overexpression of other tubulin subunits, and excess $\beta$-tubulin subunits are rapidly degraded to maintain coordinate $\alpha$- and $\beta$-tubulin levels at steady state. In contrast, free $\alpha$-tubulin represses its own synthesis at the translational level, suggesting that its level of production may be controlled by the amount of $\beta$-tubulin available for heterodimer formation. ^
Resumo:
After intestinal bypass, the mucosa of the in-continuity segment (ICS) of intestine undergoes adaptive hyperplasia which results in increased absorptive function per length of intestine. In the present study, 70% of the small intestine was bypassed in rats to determine if intestinal muscle also adapts after bypass. To determine the effect of bypass on intestinal transit, a poorly absorbed marker substance was introduced into the orad portion of the ICS or bypassed loop (BL). Significantly less marker (P < 0.05) was passed from the ICS into the colon in 50 minutes in fed rats at 14 days compared to at 3 days after bypass. In 150 minutes there was more marker in the colon of fed rats at 3 and 14 days but not at 35 days after bypass than in control. In the BL, transit was slowed significantly in fed rats at 3 and 35 days and in fasted rats at 3 days but not 35 days after bypass compared to control. The circular muscle from the BL and the distal but not proximal portion of the ICS developed significantly more carbachol-stimulated force in vitro at 35 but not 3 days after bypass compared to unoperated but not sham-operated controls. At 35 days after bypass, the muscle layers had a greater muscle wet weight and protein content compared to both unoperated and sham-operated control in both the proximal and distal portions of the ICS. Similarly, there was more muscle in histological sections of the BL and distal portion of the ICS at 35 days after bypass compared to either control. Nonetheless, at 35 days after bypass actomyosin content as a fraction of muscle weight or total protein content was not different from control. The results support the hypothesis that there was a functional adaptation, i.e. slowed transit in fed rats that allowed more time for absorption. Feeding caused slowed transit in the BL as well as the ICS. Other results suggest that an increased amount of functional muscle formed in the distal portion of the ICS after bypass. ^
Resumo:
Skeletal muscles can adapt to increased mechanical forces (or loading) by increasing the size and strength of the muscle. Knowledge of the molecular mechanisms by which muscle responds to increased loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. The objective of this research was to examine the temporal associations between the activation of specific signaling pathway intermediates and their potential upstream regulator(s) in response to increased muscle loading. Previous work has demonstrated that focal adhesion kinase (FAK) activity is increased in overloaded hypertrophying skeletal muscle. Thus FAK is a candidate for transducing the loading stimulus in skeletal muscle, potentially by activating phosphatidylinositol 3-kinase (PI3K) and members of the mitogen-activated protein kinase (MAPK) family. However, it was unknown if muscle overload would result in activation of PI3K or the MAPKs. Thus, this work seeks to characterized the temporal response of (1) MAPK phosphorylation (including Erk 2, p38 MAPK and JNK), (2) PI3K activity, and (3) FAK tyrosine phosphorylation in response to 24 hours of compensatory overload in the rat soleus and plantaris muscles. In both muscles, overload resulted in transient Increases in the phosphorylation state of Erk2 and JNK, which peaked within the first hour of overload and returned to baseline thereafter. In contrast, p38 MAPK phosphorylation remained elevated throughout the entire 24-hour overload period. Moreover, overload increased PI3K activity only, in the plantaris and only at 12 hours. Moreover, 24 hours of overload induced a significant increase in total protein content in the plantaris but not the soleus. Thus an increase in total muscle protein content within the 24-hour loading period was observed only in muscle exhibiting increased PI3K activity. Surprisingly, FAK tyrosine phosphorylation was not increased during the overload period in either muscle, indicating that PI3K activation and increased MAPK phosphorylation were independent of increased FAK tyrosine phosphorylation. In summary, increased PI3K activity and sustained elevation of p38 MAPK phosphorylation were associated with muscle overload, identifying these pathways as potential mediators of the early hypertrophic response to skeletal muscle overload. This suggests that stimuli or mechanisms that activate these pathways may reduce/minimize muscle wasting and frailty. ^